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Abstract
We perform a classification of integrable systems of mixed scalar and vector
evolution equations with respect to higher symmetries. We consider polynomial
systems that are homogeneous under a suitable weighting of variables. This
paper deals with the KdV weighting, the Burgers (or potential KdV or
modified KdV) weighting, the Ibragimov–Shabat weighting and two unfamiliar
weightings. The case of other weightings will be studied in a subsequent paper.
Making an ansatz for undetermined coefficients and using a computer package
for solving bilinear algebraic systems, we give the complete lists of second-
order systems with a third-order or a fourth-order symmetry and third-order
systems with a fifth-order symmetry. For all but a few systems in the lists,
we show that the system (or, at least a subsystem of it) admits either a Lax
representation or a linearizing transformation. A thorough comparison with
recent work of Foursov and Olver is made.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv

1. Introduction

The symmetry approach has been proven to be the most efficient integrability test for (1+1)-
dimensional nonlinear evolution equations [1–10] (see also a recent review [11]). It is useful
in classifying both scalar evolution equations and evolutionary systems of equations (see e.g.
[10]). A milestone in this direction is the work of Mikhailov, Shabat and Yamilov [4, 5, 7, 8]
on the classification of second-order systems with two components. Their work dealt with a
large class of systems that are non-polynomial in general and have a nondegenerate leading
part with respect to x-derivatives. They obtained a complete list of systems possessing higher
conservation laws, up to some (almost) invertible transformations [7, 8]. Systems with both
higher conservation laws and higher symmetries are believed to be integrable by the inverse
scattering method, for short ‘S-integrable’ in the terminology of Calogero [12, 13]. The aim
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of this paper is to extend the classification of Mikhailov et al and to make it easily accessible.
To be specific, we pursue the following goals with this paper.

• To provide a ‘user-friendly’ complete list of systems without any freedom of nontrivial
transformations. By that the user does not have to find transformations to locate a given
system in our list. Trivial scaling parameters are removed. Naturally, this is possible only
for a much more restricted class of systems than that considered by Mikhailov et al.

• To include systems without higher conservation laws3, but with higher symmetries, in
the classification. Systems of this sort are believed to be linearizable by an appropriate
change of variables and, if so, said to be ‘C-integrable’ in the terminology of Calogero
[12, 13].

• To allow systems to have a degenerate leading part. This means that the coefficient matrix
of leading terms may have a zero eigenvalue.

• To classify systems of higher order (third order, etc).
• To classify systems with more than two components.

Here we mention earlier studies devoted to these extensions, although we do not know any
work dealing with all these extensions simultaneously. A rather user-friendly list of integrable
systems of second order with two components was presented in [14] (see also a similar
list in [15]). Some classifications of ‘C-integrable’ systems including coupled Burgers-type
equations have been reported in [15–18]4. Classification of integrable coupled KdV-type
equations has been performed in [19–22] using the symmetry approach and in [23, 24]
using the Painlevé PDE test. Coupled potential KdV (coupled pKdV) equations and coupled
modified KdV (coupled mKdV) equations with higher symmetries were listed in [25] (see
also [26]). Classification of coupled KdV equations and coupled mKdV equations was
studied in connection with Jordan algebras in [27, 28], where the coefficient matrix of leading
terms is restricted to the identity. The Painlevé PDE test was applied to coupled higher
order nonlinear Schrödinger equations in [29], where integrable coupled mKdV equations
and coupled derivative nonlinear Schrödinger (coupled DNLS) equations were obtained.
Classification of non-commutative generalizations of integrable systems on an associative
algebra was addressed in [30] (see also [31–33] for DNLS-type systems), while vector
generalizations of integrable systems were discussed in [34].

In this paper, we investigate evolutionary systems for one scalar unknown u(x, t) and one
vector unknown U(x, t) ≡ (U1, U2, . . . , UN) using the symmetry approach. In particular, we
classify second-order and third-order systems that are polynomial in u,U and their derivatives.
This work was initiated by Vladimir Sokolov and the second author (TW) in [34]. Here, N
is an arbitrary positive integer and the product between two vectors is defined by the scalar
product

〈
∂m
x U, ∂n

x U
〉 ≡

N∑
j=1

(
∂m
x Uj

)(
∂n
x Uj

)
, m, n � 0.

We do not consider constant vectors Cj or matrices Cjk as in
∑N

j=1 Cj

(
∂m
x Uj

)
or, for example,∑N

j,k=1 Cjk

(
∂m
x Uj

)(
∂n
x Uk

)
. Moreover, we require that the scalar and vector evolution equations

are truly coupled, that is, U occurs in ut = · · · and u occurs in Ut = · · ·. Classifications
described in this paper are restricted to (λ1, λ2)-homogeneous systems of weight µ. These are
systems that admit the one-parameter group of scaling symmetries

(x, t, u, Uj ) −→ (a−1x, a−µt, aλ1u, aλ2Uj), a �= 0.

3 Here we mean conservation laws that do not depend on x and t explicitly.
4 The list given in [16] seems to be incomplete, because we cannot identify an integrable system of the Burgers type
(cf (4.3) in this paper) with any system in the list.
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We consider only systems with λ1, λ2 > 0 and a differential order equal to µ. For systems
with λ1 = λ2, this would imply the existence of a linear leading part (dispersion), but not in
the case of mixed systems with λ1 �= λ2. For example, for µ = 2 and λ1 = 2λ2, the two terms
uxx and 〈U,Uxx〉 have the same weight and a differential order equal to µ. In either case,
systems having a degenerate leading part are also included in our classification.

For the scalar case, it was proven in [35] that a λ-homogeneous polynomial evolution
equation with λ > 0 and a dispersion term may possess a polynomial higher symmetry only if

λ = 2 (KdV weighting),
λ = 1 (Burgers/pKdV/mKdV weighting) or
λ = 1

2 (Ibragimov–Shabat weighting [36]).

It was also proven in [35] that any symmetry-integrable5 equation of second (third) order in
the considered classes does possess a symmetry of third (fifth) order, respectively. Similar
results on (λ1, λ2)-homogeneous polynomial systems of weight 2 with two components were
obtained in [14]. Under the conditions of λ1, λ2 > 0, |λ1 − λ2| /∈ N>0, a nondegeneracy of
the linear part6 and the order of the nonlinear part less than 2, such a system may possess
polynomial higher symmetries only if λ1 = λ2 = 2, 1, 1

2 or

λ1 = 1
3 , λ2 = 2

3 ;
λ1 = 2

3 , λ2 = 1
3 .

In these classes, any symmetry-integrable system of second order does possess a symmetry
of third order or fourth order. Since we study (1 + N)-component systems of second and
third order that may have a degenerate leading part, we cannot entirely rely on these results.
They neither give all possible pairs of (λ1, λ2) for integrable cases nor indicate the order of a
higher symmetry to exist. Nevertheless, in this paper, we concentrate our attention on systems
that are homogeneous in (λ1, λ2) = (2, 2), (1, 1),

(
1
2 , 1

2

)
,
(

1
3 , 2

3

)
or

(
2
3 , 1

3

)
and µ = 2 or 3.

Indeed, as we will see below, there exist a lot of interesting integrable systems in these classes.
Classifications for other pairs of (λ1, λ2) will be reported in a subsequent paper.

The search for integrable systems in this paper is based on the simplest version of the
symmetry approach [1, 2], i.e. the existence of one higher symmetry. It is considered as a
necessary, but in general not sufficient condition for integrability7. Both ‘S-integrable’ and
‘C-integrable’ systems can be detected by the existence of one higher symmetry. To do concrete
computations using the computer algebra program CRACK [40], we assume the existence of a
third-order or a fourth-order symmetry for a second-order system and a fifth-order symmetry
for a third-order system. Although the existence of symmetries of a specific order may be
too restrictive and not necessary for integrability8, it allows us to perform exhaustive searches
and obtain complete lists for these cases. An overview of the performed computations is
given in the next section. For the lists generated by computer, we first remove inessential
parameters by scaling independent and dependent variables. We note that a linear change
of dependent variables mixing the scalar u with components of the vector U would give
systems with more than one scalar unknown and is therefore not considered. Next, we prove

5 The symmetry-integrable equations are such equations that possess an infinite set of (commuting) higher
symmetries.
6 For full details, see [14].
7 Some systems of the Bakirov type are known to possess only a finite number of higher symmetries [37–39].
However, all such examples are pathological and less interesting, because they are already in their given form
triangular linear. In this paper, we encounter systems with a higher symmetry that are reducible to a triangular
form by a nonlinear and non-ultralocal change of variables. It is an open question whether such systems are
symmetry-integrable in general.
8 As a result, we may miss some integrable cases.
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integrability for nearly all listed systems by constructing either a Lax representation or a
linearizing transformation9. Some systems in the lists can be reduced to triangular systems
by a nonlinear transformation of dependent variables. If that is possible then systems contain
a closed subsystem in a nontrivial manner. In that case, we first prove the integrability of the
subsystem and then discuss how to solve the remaining equations. We can reduce the task
of proving the integrability through establishing relationships among the listed systems. We
construct a rich set of Miura-type transformations, including Miura maps plus potentiation,
that connect different systems in the lists. Thus, we have only to investigate one representative
for each group of connected systems.

This paper is organized as follows. In section 2, we explain briefly how the lists of
systems in this paper are generated by computer. In section 3, we perform a classification
of second-order and third-order systems in the λ1 = λ2 = 2 (KdV weighting) case. The list
of second-order systems with a third-order or a fourth-order symmetry is empty, while that of
third-order systems with a fifth-order symmetry consists of four members. The list itself is
already known [34] but we prove their integrability in section 3.

Section 4 forms the main part of this paper. We classify second-order and third-order
systems in the λ1 = λ2 = 1 (Burgers/pKdV/mKdV weighting) case. The list of second-order
systems consists of three members that generalize the Burgers equation. All these systems
possess both a third-order and a fourth-order symmetry. We can (triangular) linearize two of
them through an extension of the Hopf–Cole transformation, while integrability10 of the other
system, (4.5), remains unproven. We discuss travelling-wave solutions of (a subsystem of) this
system to indicate its nontrivial nature. The interested reader is referred to section 4.2.3 for the
details. The list of third-order systems consists of 25 members, three of which are symmetries
of the second-order systems from the previous list. Consequently, we can (triangular) linearize
two of the three third-order systems, while integrability of the other third-order system remains
to be seen. Another third-order system in the list (system (4.9)) is very close to the latter
system and we do not know how to integrate it either. For the other 21 (= 25−3−1) systems
of third order, we prove that they are integrable or, at least, they contain an integrable closed
subsystem. We point out that one of the 21 systems is the third-order symmetry of a nontrivial
first-order system. Miura-type transformations that connect third-order systems in the lists of
λ1 = λ2 = 1 and λ1 = λ2 = 2 are presented.

In section 5, we classify second-order and third-order systems in the λ1 = λ2 = 1
2

(Ibragimov–Shabat weighting) case. The list of second-order systems is empty, while that
of third-order systems consists of two members. We can linearize both of them through
a generalization of the linearizing transformation for the Ibragimov–Shabat equation. In
section 6, we obtain negative results regarding a classification in the case of λ1 = 1

3 , λ2 = 2
3 .

In section 7, we perform a classification of second-order and third-order systems in the case
of λ1 = 2

3 , λ2 = 1
3 . We obtain one second-order system with a third-order symmetry, two

second-order systems with a fourth-order symmetry and two third-order systems with a fifth-
order symmetry. Thereby we have one second-order system without a third-order symmetry,
but with a fourth-order symmetry. All the listed systems can be linearized through an ultralocal
change of dependent variables. Section 8 is devoted to concluding remarks.

Finally, we would like to mention that our results in section 4 refine and generalize the
recent work of Foursov and Olver [18, 25, 26]. Their work focused on polynomial systems
of two symmetrically coupled nonlinear evolution equations, i.e. symmetric systems for two
scalar unknowns. They obtained the complete lists of λ1 = λ2 = 1 homogeneous systems of

9 In this paper, we are not going to pursue the symmetry integrability.
10 We mean the existence of either a Lax representation or a linearizing transformation.
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second and third order with two higher symmetries of specific orders. Most of the (1 + N)-
component systems listed in section 4 generalize two-component systems of Foursov–Olver,
up to a linear change of dependent variables. To see this, we remark that, because of our
assumption on the admissible multiplications, the evolution equation for the scalar u is even in
the vector U, while the equation for U is odd in U. Therefore, we can symmetrize our systems
in the special case N = 1 through the linear change of variables: u = a(q + r), U = b(q − r),
where a and b are nonzero constants.

On the basis of this re-formulation, we compare in section 4 our lists with those of
Foursov–Olver. A brief summary of the comparison results is as follows:

• Any system in Foursov–Olver’s lists11 corresponds to the N = 1 case of one or two
systems in our lists. This means that, after the linear change of dependent variables
mentioned above, their two-component systems always admit (1 + N)-component
generalization(s) preserving the integrability. This result is quite interesting, but unlikely
to hold true in general for other classes of two-component systems.

• Some systems in our lists do not have any counterpart in Foursov–Olver’s lists. They are
systems that become the trivial equation ut = 0 under the reduction U = 0. Such systems
were excluded from consideration in the work of Foursov–Olver by their assumption on
strong nondegeneracy of the linear part (see e.g. section 2 of [18]). In this respect, our
lists are richer than Foursov–Olver’s lists even in the N = 1 case.

Besides extending Foursov–Olver’s lists [18, 25, 26], we prove the integrability of many
systems in their lists for the first time. We also correct errors in [18, 25, 26] and point out
overlooked references in which some systems in their lists were studied earlier.

2. Computational aspects

Before describing the classification results in sections 3–7, in this section, we would like to
make some comments on the computations performed.

As the first step, a homogeneous ansatz for a system consisting of a scalar equation
ut = · · · and a vector equation Ut = · · · is generated together with a system of higher
symmetry equations uτ = · · · , Uτ = · · ·. Each term has a different undetermined coefficient.
We assume that these coefficients do not depend on N (the number of components of U), and
that N is not fixed at any specific value12.

Computationally more expensive is the formulation of the symmetry conditions u[t,τ ] =
0, U[t,τ ] = 0. For low values of λ1, λ2 and high differential order the right-hand sides of
the system and the symmetry involve many terms, and in addition each of the terms has
an increasing number of factors. Higher order x-derivatives of such terms cause a large
expression swell, too large to compute the commutators in one step. We therefore perform
the computation of u[t,τ ] and U[t,τ ] in stages. Because the right-hand sides of the system and
the symmetry do not involve ∂t , ∂τ , substitutions of ut , Ut , uτ , Uτ in the commutators are
done only once. Consequently, commutators are linear in the coefficients of the system and
coefficients of the symmetry. To exploit this linearity, we partition

ut =
∑

i

Fi, Ut =
∑

i

Gi, uτ =
∑

i

Hi,

Uτ =
∑

i

Ki, u[t,τ ] =
∑

i

Pi, U[t,τ ] =
∑

i

Qi,
(2.1)

11 We mean the lists of systems that are not reducible to a triangular form by a linear change of dependent variables.
12 The arbitrariness of N is crucial for functional independence of the scalar products 〈∂m

x U, ∂n
x U〉 (0 � m � n) [34].
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where the expressions Fi,Gi,Hi,Ki, Pi,Qi contain only terms with a total degree i of all
scalar vector products of U and x-derivatives of U (for example, 〈U,Ux〉U having degree 1).
By using the observation that the number of scalar vector products in a term does not change
when a term is differentiated, we can compute each Pi independently through

Pi =
i∑

j=0

u[t,τ ]|ut=Fj ,Ut=Gj , uτ =Hi−j , Uτ =Ki−j
,

and similarly for each Qi . Because they are the only terms that have ith degree powers of scalar
vector products, all Pi,Qi must vanish identically. After one single Pi or Qi is computed, it
can be split13 and some of the consequences, such as the vanishing of some coefficients, can
be used to simplify Fi,Gi,Hi,Ki before computing the next Pj and Qj .

For large problems (low λ and high differential order), the computation of Qi was still
too memory intensive14 so that another partitioning of the computation was implemented. In
this level of partitioning, first those terms in Fi,Gi,Hi,Ki which can contribute to the highest
derivative vectorial factor ∂

j
x U in Qi were considered. Let us call the partial commutator that

comes out of this computation Ĉi,j . From Ĉi,j all the terms with vectorial factor ∂
j
x U are

extracted, split, and the remaining terms from Ĉi,j (with a vectorial factor of order <j ) are
carried over for the computation of the next terms with derivative vectorial factor ∂

j−1
x U in

Qi .15

In this way, the computation of single large expressions u[t,τ ], U[t,τ ] is avoided and replaced
by the computation of many partial commutators resulting in bilinear algebraic equations for
the undetermined coefficients.

To each list of conditions is attached a list of inequalities which have to be fulfilled
by any solution. A first inequality results from the requirement that at least one of both
equations involves at least one x-derivative of the required order (second or third). Similarly,
the symmetry equations have to involve at least one x-derivative of the required order and the
right-hand sides of both symmetry equations must be nonzero. Two further conditions prevent
the generation of triangular integrable systems by requiring that U occurs in ut = · · · and u
occurs in Ut = · · ·.

The solution of the overdetermined bilinear algebraic systems was accomplished with
the computer program CRACK written for the solution of overdetermined algebraic but also
differential systems. One technique that proved to be quite useful in general, especially for
the solution of larger systems with λ1 = λ2 = 1 and λ1 = λ2 = 1

2 , is an equation shortening
method described in [41].

Tables 1–3 give an overview on the complexity of computations. These have been
performed on a 1.7 GHz Pentium 4 PC running the computer algebra system REDUCE 3.7 in
a 120 MB session under Linux. Quoted execution times are sensitive to settings of computing
parameters and should be taken only as rough indicators.

For λ1 = λ2 = 1 and orders 3 + 5, the large number of solutions has the consequence
that the system of algebraic conditions does not simplify so readily and is more complicated
to solve. Hence, the program has more often to impose case distinctions where an unknown
is assumed to be at first zero and then nonzero. As a result, solutions may be found which
can be unified into a single solution. This is the case if, for example, one solution S1 includes
the condition a17 = 0 while the other solution S2 requires a17 �= 0 for some undetermined

13 By splitting we mean the extraction and setting to zero of all coefficients of all products of all powers of all scalar
and vector functions and their derivatives.
14 The computation was too memory demanding to be performed on the computers available to one of the authors in
2000.
15 More details can be obtained at request.
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Table 1. Computations in the orders 2 + 3 problem for the five weightings.

λ1, λ2 2, 2 1, 1 1
2 , 1

2
1
3 , 2

3
2
3 , 1

3

Number of unknowns in the system 5 10 15 10 13
Number of unknowns in the symmetry 6 21 36 24 22
Total number of unknowns 11 31 51 34 35
Number of conditions 13 66 149 102 114
Total number of terms in all conditions 34 341 1093 529 694
Average number of terms in a condition 2.6 5.2 7.3 5.2 6.1
Time to formulate algebraic conditions 0.5 s 1.8 s 8 s 3.2 s 6.3 s
Time to solve conditions 0.5 s 29 s 29 s 45 s 22 s
Number of solutions 0 3 0 0 1

Table 2. Computations in the orders 2 + 4 problem for the five weightings.

λ1, λ2 2, 2 1, 1 1
2 , 1

2
1
3 , 2

3
2
3 , 1

3

Number of unknowns in the system 5 10 15 10 13
Number of unknowns in the symmetry 12 39 79 54 66
Total number of unknowns 17 49 94 64 79
Number of conditions 26 123 313 215 276
Total number of terms in all conditions 77 770 3096 1462 2435
Average number of terms in a condition 3.0 6.3 9.9 6.8 8.8
Time to formulate algebraic conditions 1 s 5 s 48 s 13 s 48 s
Time to solve conditions 0.4 s 1 min 58 s 3 min 44 s 1 min 23 s 3 min 40 s
Number of solutions 0 3 a 0 0 2

a Although the program CRACK originally produced four solutions, we could easily recognize that one solution is a
special case of another.

Table 3. Computations in the orders 3 + 5 problem for the five weightings.

λ1, λ2 2, 2 1, 1 1
2 , 1

2
1
3 , 2

3
2
3 , 1

3

Number of unknowns in the system 6 21 36 24 22
Number of unknowns in the symmetry 17 74 164 115 126
Total number of unknowns 23 95 200 139 148
Number of conditions 50 386 1154 798 955
Total number of terms in all conditions 218 5000 27 695 12 694 17 385
Average number of terms in a condition 4.4 13 24 16 18
Time to formulate algebraic conditions 5 s 2 min 52 s 2 h 7 min 23 min 45 s 41 min 18 s
Time to solve conditions 6.5 s 5 h 47 min 1 day a 1 h 20 min 1 h 7 min
Number of solutions 4 25 2 0 2

a The computation involved one manual interference.

coefficient a17, and if setting a17 = 0 in S2 makes both solutions equivalent, in the system
and in the symmetry. Sometimes a substitution like a17 = 0 in S2 may cause a division by
zero which can be avoided by re-parametrizing S2. An algorithm and its implementation in a
computer program analysing such situations have recently been developed and applied.

On the Web page http://lie.math.brocku.ca/twolf/htdocs/sv/over.html, one can inspect the
original systems of conditions and the solutions as well as download them in machine-readable
form. In addition to investigating systems of differential orders 2 + 3 (for system + symmetry),
2 + 4 and 3 + 5, we also investigated orders 1 + 2 and 1 + 3. The main purpose was to recognize
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whether a second-order or a third-order system is actually the symmetry of a nontrivial first-
order system. Details can also be found on the above-mentioned Web page. The package
CRACK can be obtained from http://lie.math.brocku.ca/twolf/crack/.

After all solutions have been determined, the task of proving integrability follows.
In the process of identifying and classifying some of the constant coefficient systems, the
Mathematica package ‘InvariantsSymmetries.m’ [42] has been used to compute conservation
laws and higher symmetries.

3. The case λ1 = λ2 = 2: coupled KdV equations

In this section, we classify second-order and third-order systems in the λ1 = λ2 = 2 (KdV
weighting) case. In the first part (section 3.1), we present a complete list of such systems with
a specific order symmetry (the list is already known, see [34]). In the second part (section 3.2),
we prove the integrability of the listed systems.

3.1. List of systems with a higher symmetry

The general ansatz for a λ1 = λ2 = 2 homogeneous evolutionary system of second order for
a scalar function u and a vector function U takes the form{

ut2 = a1uxx + a2u
2 + a3〈U,U 〉,

Ut2 = a4Uxx + a5uU.
(3.1)

The following constraints guarantee the order to be 2 and the system not to be triangular:

(a1, a4) �= (0, 0), a3 �= 0, a5 �= 0.

Similarly, the general ansatz for a third-order system takes the form{
ut3 = b1uxxx + b2uux + b3〈U,Ux〉,
Ut3 = b4Uxxx + b5uxU + b6uUx,

(3.2)

for which the following constraints guarantee the order to be 3 and the system not to be
triangular:

(b1, b4) �= (0, 0), b3 �= 0, (b5, b6) �= (0, 0).

However, we relax these constraints as

(b1, b4) �= (0, 0), (b1, b2, b3) �= (0, 0, 0), (b4, b5, b6) �= (0, 0, 0),

when we consider a third-order symmetry for a second-order system, as stated in section 2.
We omit the general ansatz for a fourth-order or a fifth-order system here (in the λ1 = λ2 = 2
case) and hereafter (in the other weightings) because of its increased length. However, it is
available on the above-mentioned Internet site.

Proposition 3.1. No second-order system of the form (3.1) with a third-order symmetry of the
form (3.2) or a fourth-order symmetry exists.

Theorem 3.2. Any third-order system of the form (3.2) with a fifth-order symmetry has to
coincide with one of the following four systems up to a scaling of t3, x, u,U (we omit the
subscript of t3):{

ut = 〈U,Ux〉,
Ut = Uxxx + uxU + 2uUx,

(3.3)
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ut = uxxx + 6uux − 6〈U,Ux〉,
Ut = Uxxx + 6uxU + 6uUx,

(3.4)

{
ut = uxxx + 3uux + 3〈U,Ux〉,
Ut = uxU + uUx,

(3.5)

{
ut = uxxx + 6uux − 12〈U,Ux〉,
Ut = −2Uxxx − 6uUx.

(3.6)

All systems (3.3)–(3.6) admit the reduction U = 0. From this viewpoint, (3.3) is a
generalization of the trivial equation ut = 0, while (3.4)–(3.6) are generalizations of the
KdV equation.

3.2. Integrability of systems (3.3)–(3.6)

3.2.1. System (3.3). System (3.3) is a multi-component generalization of one of the Drinfel’d–
Sokolov systems [43, 44]. The integrability of this system has been established in the literature
[45–47].

3.2.2. System (3.4). System (3.4) is known as a Jordan KdV system [27, 28, 34, 48]. Let us
briefly summarize its integrability. It is well known that the matrix KdV equation,

Qt = Qxxx + 3(Q2)x, (3.7)

admits a Lax representation [49–52]. Then, system (3.4) is also integrable, because it is
obtained from (3.7) through the following reduction:

Q = u1 +
N∑

j=1

Uj ej .

Here 1 is the identity matrix and {e1, . . . , eN } are mutually anti-commuting matrices that
satisfy the condition

{ei , ej }+ ≡ eiej + ej ei = −2δij 1.

3.2.3. System (3.5). System (3.5) is a multi-component generalization of the Zakharov–Ito
system [52, 53] and corresponds to a special case of the coupled KdV equations considered by
Kupershmidt [54]. Introducing a new variable w by w ≡ √〈U,U 〉, we find that (3.5) contains
the original Zakharov–Ito system{

ut = uxxx + 3uux + 3wwx,

wt = (uw)x.
(3.8)

Therefore, system (3.5) is a triangular system that consists of the Zakharov–Ito system and
the linear equation for U with Zakharov–Ito-system-dependent coefficients.

To demonstrate the integrability of the whole system (3.5), we first summarize a Lax
representation for the Zakharov–Ito system [52, 55, 56]. We consider a pair of linear equations
for a scalar function ψ ,{

ψxx = (ζ + q + ζ−1r)ψ,

ψt = (4ζ − 2q)ψx + qxψ,
(3.9)
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where ζ is the spectral parameter. Then, the compatibility condition ψxxt = ψtxx for (3.9)
implies the following system:{

qt = qxxx − 6qqx + 4rx,

rt = −4qxr − 2qrx.

This system coincides with the Zakharov–Ito system (3.8) through the change of dependent
variables, q = −u/2, r = −3w2/16. It is noteworthy that the quantity 1/ψ2 in the limit ζ → 0
obeys the same evolution equation as that for U, namely Ut = (uU)x .

Next, we fix a solution of subsystem (3.8) and discuss solutions of the linear equation
for U. For the sake of simplicity, we assume that w(x, t) in the fixed solution is not a trivial
function. Then, noting the relation wt = (uw)x , we obtain the following solution to the
equation for U:

Uj = w · fj

(∫ x

w dx ′
)

, j = 1, 2, . . . , N.

Here f1(z), . . . ,fN(z) are arbitrary functions of z, except that they must satisfy one constraint,∑N
j=1[fj (z)]2 = 1, due to the relation 〈U,U 〉 = w2. For the case in which w(x, t) is

identically zero, we mention some references in section 4.2.9.

3.2.4. System (3.6). System (3.6) is a multi-component generalization16 of the two-component
KdV system ((3.6) with N = 1) proposed by Hirota and Satsuma [57]. Actually, the Hirota–
Satsuma system is also understood as an example of the Kac–Moody KdV systems studied
independently by Drinfel’d and Sokolov [43, 44]. A Lax representation for the Hirota–Satsuma
system was constructed in [59]17. Recently, it was generalized to the three-component case
((3.6) with N = 2) by Wu et al [61]. Let us demonstrate that (3.6) admits a Lax representation
in the general case of N-component vector U. We consider a set of linear equations for two
column-vector functions ψ and φ,


ψxx + Pψ + Qφ = ζψ,

φxx + Pφ + Rψ = −ζφ,

ψt = 4ζψx + 2Pψx − 4Qφx − Pxψ + 2Qxφ,

φt = −4ζφx + 2Pφx − 4Rψx − Pxφ + 2Rxψ.

Here, ζ is the spectral parameter and P,Q and R are square matrices with the same
dimension. The compatibility conditions ψxxt = ψtxx, φxxt = φtxx imply a system of three
matrix equations


Pt = Pxxx + 3(P 2)x − 6(QR)x,

Qt = −2Qxxx − 6QxP + 3[Px,Q],
Rt = −2Rxxx − 6RxP + 3[Px,R],

(3.10)

together with three constraints

[P,Q] = O, [P,R] = O, [Q,R]x = O.

If we consider the reduction

P = u1, Q = U11 +
N−1∑
j=1

Uj+1ej , R = U11 −
N−1∑
j=1

Uj+1ej , {ei , ej }+ = −2δij 1,

the three constraints are automatically satisfied and system (3.10) is reduced to the multi-
component Hirota–Satsuma system (3.6).

16 This multi-component generalization was proposed in [58], but the integrability was not discussed in that paper.
17 Vladimir Sokolov commented that the Lax representation was reported earlier in the Russian paper [60], which is
not accessible to the authors.
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4. The case λ1 = λ2 = 1: coupled Burgers, pKdV and mKdV equations

In this section, we classify second-order and third-order systems in the λ1 = λ2 = 1
(Burgers/pKdV/mKdV weighting) case. In the first part (section 4.1), we present complete
lists of such systems with a specific order symmetry. In the second part (section 4.2), we discuss
the integrability of the listed systems and compare them with Foursov–Olver’s two-component
systems [18, 25, 26] through symmetrization as stated in the introduction.

4.1. Lists of systems with a higher symmetry

The general ansatz for a λ1 = λ2 = 1 homogeneous evolutionary system of second order for
a scalar function u and a vector function U takes the form{

ut2 = a1uxx + a2uux + a3u
3 + a4u〈U,U 〉 + a5〈U,Ux〉,

Ut2 = a6Uxx + a7uxU + a8uUx + a9u
2U + a10〈U,U 〉U.

(4.1)

The following constraints guarantee the order to be 2 and the system not to be triangular:

(a1, a6) �= (0, 0), (a4, a5) �= (0, 0), (a7, a8, a9) �= (0, 0, 0).

Similarly, the general ansatz for a third-order system takes the form


ut3 = b1uxxx + b2uuxx + b3u
2
x + b4u

2ux + b5u
4 + b6ux〈U,U 〉

+ b7u〈U,Ux〉 + b8〈U,Uxx〉 + b9〈Ux,Ux〉 + b10u
2〈U,U 〉 + b11〈U,U 〉2,

Ut3 = b12Uxxx + b13uxxU + b14uxUx + b15uUxx + b16uuxU

+ b17u
2Ux + b18〈U,U 〉Ux + b19〈U,Ux〉U + b20u

3U + b21u〈U,U 〉U,

(4.2)

for which the following constraints guarantee the order to be 3 and the system not to be
triangular: (b1, b12) �= (0, 0) and at least one of b6, . . . , b11 and one of b13, . . . , b17, b20, b21

must not vanish. However, when we consider a third-order symmetry for a second-order
system, we relax these constraints as follows (cf section 2): (b1, b12) �= (0, 0) and at least one
of b1, . . . , b11 and one of b12, . . . , b21 must not vanish.

Theorem 4.1. Any second-order system of the form (4.1) with a third-order symmetry of the
form (4.2) has to coincide with one of the following three systems up to a scaling of t2, x, u,U

(we omit the subscript of t2):


ut = 1
3 (1 + 2a)(uxx + 2uux) + 4

3 〈U,Ux〉,
Ut = Uxx + 1

3 (1 − a)uxU + uUx + 1
12 (1 − 4a)u2U − 1

3 〈U,U 〉U,

a is arbitrary,
(4.3)

{
ut = uxx + 2uux + 2〈U,Ux〉,
Ut = − 1

2uxU − 1
2u2U − 1

2 〈U,U 〉U,
(4.4)

{
ut = uxx + 2uux + 〈U,Ux〉,
Ut = 1

2uxU + uUx.
(4.5)

Proposition 4.2. Any second-order system of the form (4.1) with a fourth-order symmetry has
to coincide with one of the three systems (4.3)–(4.5) up to a scaling of t2, x, u,U .

All systems (4.3)–(4.5) admit the reduction U = 0. From this viewpoint, (4.3)–(4.5) are
considered as generalizations of the Burgers equation.
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Theorem 4.3. Any third-order system of the form (4.2) with a fifth-order symmetry has
to coincide with one of the following 25 systems up to a scaling of t3, x, u,U (we omit the
subscript of t3):




ut = a
(
uxxx + 3uuxx + 3u2

x + 3u2ux

)
+ ux〈U,U 〉 + 2u〈U,Ux〉

+ 2〈U,Uxx〉 + 2〈Ux,Ux〉,
Ut = Uxxx + 1

2 (1 − a)uxxU + 3
2uxUx + 3

2uUxx + 3
4 (1 − 2a)uuxU

+ 3
4u2Ux − 〈U,Ux〉U + 1

8 (1 − 4a)u3U − 1
2u〈U,U 〉U, a is arbitrary,

(4.6)




ut = uxxx + 3uuxx + 3u2
x + 3u2ux + ux〈U,U 〉 + 2u〈U,Ux〉

+ 2〈U,Uxx〉 + 2〈Ux,Ux〉,
Ut = − 1

2uxxU − 3
2uuxU − 〈U,Ux〉U − 1

2u3U − 1
2u〈U,U 〉U,

(4.7)




ut = uxxx + 3uuxx + 3u2
x + 3u2ux + ux〈U,U 〉 + 2u〈U,Ux〉

+ 〈U,Uxx〉 + 〈Ux,Ux〉,
Ut = 1

2uxxU + uxUx + uuxU + u2Ux + 1
2 〈U,U 〉Ux + 1

2 〈U,Ux〉U,

(4.8)




ut = uxxx + 3uuxx + 3u2
x + 3u2ux + ux〈U,U 〉 + 2u〈U,Ux〉

+ 〈U,Uxx〉 + 〈Ux,Ux〉,
Ut = 1

2uxxU + uxUx + uuxU + u2Ux + 〈U,U 〉Ux,

(4.9)

{
ut = 3ux〈U,U 〉 + 3〈U,Uxx〉 − 3〈U,U 〉2,

Ut = Uxxx + uxxU + uxUx − 3〈U,Ux〉U,
(4.10)

{
ut = 2ux〈U,U 〉 + 2〈U,Uxx〉 − 〈Ux,Ux〉 − 2〈U,U 〉2,

Ut = Uxxx + uxxU + 2uxUx − 2〈U,U 〉Ux − 2〈U,Ux〉U,
(4.11)

{
ut = ux〈U,U 〉 + 2u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉,
Ut = Uxxx + uxxU + uxUx − 2uuxU − u2Ux + 〈U,U 〉Ux − 〈U,Ux〉U,

(4.12)

{
ut = uxxx + 3

2u2
x + 3

2 〈Ux,Ux〉,
Ut = uxUx,

(4.13)

{
ut = uxxx + 3u2

x + 2aux〈U,U 〉 + a〈U,Uxx〉 + a〈Ux,Ux〉 + b〈U,U 〉2,

Ut = uxxU + 2uxUx + a〈U,U 〉Ux + a〈U,Ux〉U, (a, b) �= (0, 0),
(4.14)

{
ut = uxxx + 3u2

x − 3〈Ux,Ux〉,
Ut = Uxxx + 6uxUx,

(4.15)

{
ut = uxxx + 3u2

x + ux〈U,U 〉 + 〈U,Uxx〉,
Ut = Uxxx + 3uxxU + 3uxUx + 〈U,Ux〉U,

(4.16)

{
ut = uxxx + 3u2

x + 2ux〈U,U 〉 + 〈U,Uxx〉 + 1
2 〈Ux,Ux〉,

Ut = Uxxx + 6uxxU + 6uxUx + 2〈U,Ux〉U,
(4.17)

{
ut = uxxx + 3u2

x + 4ux〈U,U 〉 + 2〈U,Uxx〉 + 〈Ux,Ux〉 + 2
3 〈U,U 〉2,

Ut = −2Uxxx − 6uxxU − 6uxUx − 4〈U,Ux〉U,
(4.18)

{
ut = uxxx + u2

x − 12〈U,Uxx〉 + 12〈Ux,Ux〉 − 4〈U,U 〉2,

Ut = 4Uxxx + uxxU + 2uxUx + 4〈U,U 〉Ux + 4〈U,Ux〉U,
(4.19)
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ut = uxxx − 3

2u2ux + 3
2ux〈U,U 〉 + u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉,

Ut = −uxUx − 1
2u2Ux + 3

2 〈U,U 〉Ux,
(4.20)

{
ut = uxxx − 3

2u2ux + 3
2ux〈U,U 〉 + u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉,

Ut = −uxUx − 1
2u2Ux + 1

2 〈U,U 〉Ux + 〈U,Ux〉U,
(4.21)

{
ut = uxxx − 3

2u2ux + 1
2ux〈U,U 〉 + u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉,

Ut = uxxU + uxUx − uuxU − 1
2u2Ux + 1

2 〈U,U 〉Ux + 〈U,Ux〉U,
(4.22)

{
ut = uxxx − 3

2u2ux + 3
2ux〈U,U 〉 + u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉 + 1

2 〈U,U 〉2,

Ut = −uxUx − 1
2u2Ux − 1

2 〈U,U 〉Ux + 1
2u〈U,U 〉U,

(4.23)




ut = uxxx − 3
2u2ux + ux〈U,U 〉 + u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉

− 1
4u2〈U,U 〉 + 1

4 〈U,U 〉2,

Ut = 1
2uxxU + 1

2 〈U,Ux〉U − 1
4u3U + 1

4u〈U,U 〉U,

(4.24)

{
ut = uxxx + u2ux + ux〈U,U 〉,
Ut = Uxxx + u2Ux + 〈U,U 〉Ux,

(4.25)

{
ut = uxxx + 2u2ux + ux〈U,U 〉 + u〈U,Ux〉,
Ut = Uxxx + uuxU + u2Ux + 〈U,U 〉Ux + 〈U,Ux〉U,

(4.26)

{
ut = uxxx − 6u2ux + 6ux〈U,U 〉 + 12u〈U,Ux〉,
Ut = Uxxx − 12uuxU − 6u2Ux + 6〈U,U 〉Ux,

(4.27)

{
ut = uxxx − 6u2ux + ux〈U,U 〉 + 2u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉,
Ut = Uxxx + 3uxxU + 3uxUx − 6uuxU − 3u2Ux + 〈U,U 〉Ux + 3〈U,Ux〉U,

(4.28)

{
ut = uxxx − 6u2ux + ux〈U,U 〉 + 2u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉,
Ut = Uxxx + 6uxxU + 6uxUx − 12uuxU − 6u2Ux + 〈U,U 〉Ux + 4〈U,Ux〉U,

(4.29)

{
ut = uxxx − 6u2ux + ux〈U,U 〉 + 2u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉,
Ut = −2Uxxx − 6uxxU − 6uxUx + 12uuxU + 6u2Ux + 〈U,U 〉Ux − 2〈U,Ux〉U.

(4.30)

All systems (4.6)–(4.30) admit the reduction U = 0. From this viewpoint, (4.6)–(4.9),
(4.10)–(4.12), (4.13)–(4.19) and (4.20)–(4.30) are generalizations of the third-order Burgers
equation, the trivial equation ut = 0, the pKdV equation and the mKdV equation, respectively.
Actually, (4.6)–(4.8) are the third-order symmetries of the second-order systems (4.3)–(4.5),
respectively.

4.2. Integrability of systems (4.3)–(4.30)

4.2.1. Systems (4.3) and (4.6). We investigate the second-order system (4.3) and its third-
order symmetry (4.6) together. We note that the linear term uxx in (4.3) vanishes iff a = − 1

2 ,
while the term uxxx in (4.6) vanishes iff a = 0. This indicates that the case distinctions of
a �= − 1

2 or a = − 1
2 and a �= 0 or a = 0 are not very essential for the whole hierarchy of

systems starting from (4.3). As an extension of the Hopf–Cole transformation, we consider
the change of variables
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w = exp

(∫ x

u dx ′
)

,

W = U exp

(
1

2

∫ x

u dx ′
)

.

Then we can triangular linearize (4.3) and (4.6) simultaneously as{
wt = 1

3 (1 + 2a)wxx + 2
3 〈W,W 〉,

Wt = Wxx

(4.31)

and {
wt = awxxx + 〈W,W 〉x,
Wt = Wxxx.

(4.32)

For some values of a, we can solve these systems easily. When a = 1, we can fully linearize
systems (4.31) and (4.32) through defining new variables V and v by W = Vx,w+ 1

3 〈V, V 〉 = v

(see [17]). When a = − 1
2 , we integrate the equation for w in (4.31) to obtain

w(x, t) = w(x, 0) +
2

3

∫ t

0
〈W(x, t ′),W(x, t ′)〉 dt ′.

Similarly, when a = 0, we can integrate the equation for w in (4.32). We mention that Beukers,
Sanders and Wang [37, 38] studied higher symmetries of the triangular linear systems (4.31)
and (4.32) in the case of scalar W .

Symmetrization. We discuss symmetrization for the second-order system (4.3), since it is
more fundamental than its third-order symmetry (4.6). To identify (4.3) as a multi-component
generalization of a system in [18, 26], we assume the condition a �= − 1

2 and rescale variables
as

∂t = 1
3 (1 + 2a)∂s, u = 4u′, U = √

6U ′.

In addition, we introduce a new parameter α by the relation

3

1 + 2a
= 1 − 2α,

where α �= 1
2 . Then, (4.3) is rewritten as


u′

s = u′
xx + 8u′u′

x + (2 − 4α)〈U ′, U ′
x〉,

U ′
s = (1 − 2α)U ′

xx − 4αu′
xU

′ + (4 − 8α)u′U ′
x − (4 + 8α)u′2U ′

− (2 − 4α)〈U ′, U ′〉U ′.

In the case where U ′ is scalar, this system is identical to (3.7) in [18]. In that case, considering
the linear change of variables

u′ = q + r, U ′ = q − r,

we obtain a system of two symmetrically coupled Burgers equations, which coincides with
(3.6) in [18] or (3.7) in [26]. We note that system (4.3) with a = − 1

2 does not have any
counterpart in [18, 26], because of its degeneracy of the linear part (cf the introduction).
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4.2.2. Systems (4.4) and (4.7). We investigate the second-order system (4.4) and its third-
order symmetry (4.7) together. Here, we note that (4.4) and (4.7) are obtained from (4.3)
and (4.6), respectively, by rescaling t, U appropriately and taking the limit a → ∞. Then,
through the same change of variables as in section 4.2.1,


w = exp

(∫ x

u dx ′
)

,

W = U exp

(
1

2

∫ x

u dx ′
)

,

we can transform systems (4.4) and (4.7) to{
wt = wxx + 〈W,W 〉,
Wt = 0

(4.33)

and {
wt = wxxx + 〈W,W 〉x,
Wt = 0.

(4.34)

Moreover, introducing a function g(x) such that g′′(x)= 〈W,W 〉, we can linearize the
equations for w in (4.33) and (4.34) with respect to the variable w + g(x).

Symmetrization. We discuss symmetrization for the second-order system (4.4). To identify
(4.4) as a multi-component generalization of a system in [18, 26], we rescale the dependent
variables as

u = 4u′, U = 2
√

5U ′.

Then, (4.4) is rewritten as{
u′

t = u′
xx + 8u′u′

x + 10〈U ′, U ′
x〉,

U ′
t = −2u′

xU
′ − 8u′2U ′ − 10〈U ′, U ′〉U ′.

In the case where U ′ is scalar, this system should coincide with (3.10) in [18], if it were written
correctly. Unfortunately, in [18], Foursov made a mistake in deriving the equation for z in
(3.10) from (3.9). It should be corrected as zt = −2wxz − 8w2z − 10z3. If we consider the
linear change of variables

u′ = q + r, U ′ = q − r,

we obtain a system of two symmetrically coupled Burgers equations, which coincides with
(3.9) in [18] or (3.6) in [26].

4.2.3. Systems (4.5) and (4.8). We concentrate our attention on the second-order system (4.5),
and do not study its third-order symmetry (4.8). Defining a new variable w by w ≡ 1

2 〈U,U 〉,
we find that (4.5) contains a two-component Burgers system{

ut = uxx + 2uux + wx,

wt = (uw)x.
(4.35)

Therefore, system (4.5) is a triangular system that consists of the Burgers system (4.35) and
the linear equation for U with Burgers-system-dependent coefficients. We mention that in the
long-wave limit (disappearance of uxx), (4.35) reduces to the Leroux system and that (4.35)
can be rewritten as a non-evolutionary scalar equation in (at least) two different ways. The
symmetry integrability of (4.35) as well as the existence of a recursion operator has already
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been demonstrated [18, 62]. Nevertheless, we could find neither a linearizing transformation
nor a true Lax representation for (4.35). In what follows, we discuss travelling-wave solutions
of (4.35), which are expected to give useful information on its properties.

Substituting the travelling-wave form

u(x, t) = f (z) − a, w(x, t) = g(z), z = x − at

into (4.35), we get a system of two ordinary differential equations. Integrating it once, we
obtain {

f ′ + f 2 − af + g + b = 0,

fg + c = 0.
(4.36)

Here, b and c are integration constants that are determined from the boundary conditions for u
and w. Plunging g = −c/f into the first equation in (4.36), we obtain the ordinary differential
equation for f ,

df

dz
= −f 3 − af 2 + bf − c

f
. (4.37)

For the sake of simplicity, we assume that f 3 −af 2 +bf −c can be factorized into the product
(f − α1)(f − α2)(f − α3) with three distinct real roots α1, α2, α3. Thus, we have

a = α1 + α2 + α3, b = α1α2 + α2α3 + α3α1, c = α1α2α3.

Furthermore, we assume the conditions αj �= 0 (j = 1, 2, 3) to obtain nontrivial solutions of
(4.35). Indeed, if αj = 0, then c = 0 and we obtain from (4.36) either a trivial solution or a
solution of the scalar Burgers equation. Noting the identity

f

(f − α1)(f − α2)(f − α3)
= α1

(α1 − α2)(α1 − α3)

(
1

f − α1
− 1

f − α3

)

+
α2

(α2 − α1)(α2 − α3)

(
1

f − α2
− 1

f − α3

)
,

we can integrate (4.37) to obtain(
1 +

α3 − α1

f − α3

) α1
(α1−α2)(α1−α3)

(
1 +

α3 − α2

f − α3

) α2
(α2−α1)(α2−α3)

= de−z, (4.38)

where d is a constant. Now, it is clear that the functional form of 1/(f − α3) depends on the
ratio of two powers on the left-hand side,

(
α−1

3 − α−1
2

)/(
α−1

1 − α−1
3

)
. Let us consider the

simplest case in which this ratio is unity, i.e.

1

α3
= 1

2

(
1

α1
+

1

α2

)
.

In this case, we have α1 + α2 �= 0 for the existence of α3. Then we can solve (4.38) explicitly
for 1/(f − α3):

1

f − α3
= −

α1 + α2 + (α1+α2)
2

α1−α2

√
1 + exp

[− (α1−α2)2

α1+α2
(z − z0)

]
2α1α2

. (4.39)

Here, z0 is the constant given by

ez0 ≡ d

[ −4α1α2

(α1 + α2)2

] α1+α2
(α1−α2)2

.
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Using the relation α3 = 2α1α2/(α1 + α2), we can rewrite (4.39) as

f (z) = 2α1α2

α1 + α2 + α1−α2√
1+exp

[
− (α1−α2)2

α1+α2
(z−z0)

] . (4.40)

In order for the function f (z) to be non-singular, we should assume the condition α1(α1 +
α2) > 0. To summarize, we have obtained, in the simplest case, a travelling-wave solution of
(4.35) given by

u(x, t) = f (x − at) − a, w(x, t) = − c

f (x − at)
,

with (4.40), a = α1 + α2 + 2α1α2/(α1 + α2) and c = 2(α1α2)
2/(α1 + α2).

When a nontrivial solution, like the above, of subsystem (4.35) is given, we can solve the
remaining equation for U in the original system (4.5),

(
U 2

j

)
t
= (

uU 2
j

)
x
, in the same way as in

section 3.2.3.

Symmetrization. We discuss symmetrization for the second-order system (4.5). With the
rescaling of dependent variables

u = 2u′, U =
√

6U ′,
(4.5) is rewritten as{

u′
t = u′

xx + 4u′u′
x + 3〈U ′, U ′

x〉,
U ′

t = u′
xU

′ + 2u′U ′
x.

In the case where U ′ is scalar, this system is identical to (3.4) in [18]. If we consider the linear
change of variables

u′ = q + r, U ′ = q − r,

we obtain a system of two symmetrically coupled Burgers equations, which coincides with
(3.3) in [18] or (3.5) in [26].

4.2.4. System (4.9). In the case where U is scalar, system (4.9) coincides with system (4.8).
However, unlike (4.8), (4.9) in the general N case does not possess a second-order symmetry of
the form (4.1). System (4.9) contains the third-order symmetry of the two-component Burgers
system (4.35), where w is again given by w = 1

2 〈U,U 〉. Therefore, in order to demonstrate
the integrability of (4.9), we first of all need to know either a linearizing transformation or a
Lax representation for (4.35). This remains an open question.

Symmetrization. Through symmetrization of (4.9) in the case of scalar U, we just obtain the
third-order symmetry of the two symmetrically coupled Burgers equations in section 4.2.3.

4.2.5. System (4.10). System (4.10) is connected with system (4.12) through a Miura-type
transformation. We discuss the integrability of these two systems in section 4.2.7.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U = √
α(q − r).

Here, α is a nonzero constant. Then we can rewrite (4.10) as a system of two symmetrically
coupled equations


qt = 1
2qxxx − 1

2 rxxx + 1
2 (1 + 3α)(q − r)qxx + 1

2 (1 − 3α)(q − r)rxx

+ 1
2q2

x − 1
2 r2

x + 3α(q − r)2rx − 3
2α2(q − r)4,

rt = − 1
2qxxx + 1

2 rxxx − 1
2 (1 − 3α)(q − r)qxx − 1

2 (1 + 3α)(q − r)rxx

− 1
2q2

x + 1
2 r2

x + 3α(q − r)2qx − 3
2α2(q − r)4.
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This system does not belong to the class of systems studied in [25, 26], because of its
degeneracy of the linear part.

4.2.6. System (4.11). For system (4.11), we have the relation (ux − 〈U,U 〉)t = 0. Thus, we
can set

ux − 〈U,U 〉 ≡ φ(x), (4.41)

where the function φ(x) does not depend on t. Then, the equation for U is rewritten in terms
of φ(x) as

Ut = Uxxx + 2φUx + φxU. (4.42)

The solutions of (4.42) are given by

U(x, t) =
∫

dλ eλt	(x; λ),

where 	(x; λ) is a solution of the ordinary differential equation

	xxx + 2φ	x + φx	 = λ	. (4.43)

Once we obtain φ(x) and U(x, t), we can determine u(x, t) by using (4.41). The vector
equation (4.43) is of the same form as the scattering problem associated with the Kaup–
Kupershmidt equation [63, 64]. We can see that this is not a coincidence through investigation
of the fifth-order symmetry of system (4.11). Indeed, the fifth-order symmetry is rewritten
(up to a scaling of t5) in terms of φ and 	 as{
φt5 + φxxxxx + 10φφxxx + 25φxφxx + 20φ2φx = 0,

	t5 = 9	xxxxx + 30φ	xxx + 45φx	xx + (35φxx + 20φ2)	x + (10φxxx + 20φφx)	.

The first equation is nothing but the Kaup–Kupershmidt equation, while the second equation
together with (4.43) constitutes a Lax representation for it.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U = √
α(q − r).

Here, α is a nonzero constant. Then we can rewrite (4.11) as a system of two symmetrically
coupled equations


qt = 1
2qxxx − 1

2 rxxx +
(

1
2 + α

)
(q − r)qxx +

(
1
2 − α

)
(q − r)rxx

+
(
1 − 1

2α
)
q2

x + αqxrx − (
1 + 1

2α
)
r2
x − α(q − r)2qx

+ 3α(q − r)2rx − α2(q − r)4,

rt = − 1
2qxxx + 1

2 rxxx − (
1
2 − α

)
(q − r)qxx − (

1
2 + α

)
(q − r)rxx

− (
1 + 1

2α
)
q2

x + αqxrx +
(
1 − 1

2α
)
r2
x + 3α(q − r)2qx

− α(q − r)2rx − α2(q − r)4.

This system does not belong to the class of nondegenerate systems studied in [25, 26].

4.2.7. System (4.12). For system (4.12), if we define new variables w and W by{
w ≡ −ux − 1

2u2 + 1
2 〈U,U 〉,

W ≡ Ux + uU,
(4.44)
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they satisfy the following system:{
wt = −3〈W,Wx〉,
Wt = Wxxx + wxW + 2wWx.

(4.45)

This system coincides with the multi-component Drinfel’d–Sokolov system (3.3), up to a
scaling of W . The Miura map (4.44) is a multi-component generalization of that for the case
of scalar U in [43, 44].

Relation to system (4.10). If we introduce a new scalar variable v by

v ≡ ux − u2 + 〈U,U 〉, (4.46)

system (4.12) is changed into the following system:{
vt = (3v〈U,U 〉 + 3〈U,Uxx〉 − 3〈U,U 〉2)x,

Ut = Uxxx + vxU + vUx − 3〈U,Ux〉U.
(4.47)

Then, it is straightforward to obtain (4.10) (for û and U) from (4.47) through potentiation
v = ûx . Combining (4.46) and (4.44), we obtain the relation v−2w = 3ux , and consequently,

û − 2
∫ x

w dx ′ = 3u.

Using this relation, we can also rewrite (4.44) as a transformation between system (4.10) and
the multi-component Drinfel’d–Sokolov system (4.45).

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U = √
α(q − r).

Here, α is a nonzero constant. Then we can rewrite (4.12) as a system of two symmetrically
coupled equations


qt = 1
2 [qxx − rxx + (1 + α)(q − r)qx + (1 − α)(q − r)rx

− (1 − α)q3 − (1 + α)q2r + (1 − α)qr2 + (1 + α)r3]x,
rt = 1

2 [−qxx + rxx − (1 − α)(q − r)qx − (1 + α)(q − r)rx

+ (1 + α)q3 + (1 − α)q2r − (1 + α)qr2 − (1 − α)r3]x.

(4.48)

This system does not belong to the class of nondegenerate systems studied in [25, 26].
However, it was found in connection with the Kac–Moody Lie algebras and written in a
Hamiltonian form about 20 years ago [43, 44]. More specifically, system (4.48) with α = −1
coincides with (3)–(4) in [43] for the D

(2)
3 case, up to a scaling of variables (see also the

generalized mKdV equation in [44] for the A
(2)
3 case).

4.2.8. System (4.13). System (4.13) is merely a potential form of the multi-component
Zakharov–Ito system (3.5).

Symmetrization. In the case where U is scalar, we set

u = q + r, U = q − r.

Then we can rewrite (4.13) as a system of two symmetrically coupled pKdV equations{
qt = 1

2qxxx + 1
2 rxxx + 2q2

x + r2
x ,

rt = 1
2qxxx + 1

2 rxxx + q2
x + 2r2

x .

This system is identical to (37) in [25] or (3.10) in [26].
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4.2.9. System (4.14). Remark. If we consider separately the two cases a = 0 and a �= 0,
we can reduce the number of parameters in system (4.14) by scaling variables. In the former
case the parameter b can also be fixed at any nonzero value, while in the latter case only
the parameter a can be scaled away. However, this case distinction is neither necessary nor
essential, as is demonstrated below.

If we define new variables w and W by{
w ≡ ux + a

2 〈U,U 〉,
W ≡ √〈U,U 〉U,

they satisfy the following system:{
wt = wxxx + 6wwx +

(
b − a2

4

)〈W,W 〉x,
Wt = 2(wW)x.

(4.49)

Thus, the essential parameter is b − a2/4 rather than a or b. If b − a2/4 �= 0, system (4.49)
coincides with the multi-component Zakharov–Ito system (3.5), up to a scaling of variables.
When b − a2/4 = 0, (4.49) is a triangular system that consists of the KdV equation and the
linear equation for W with KdV-equation-dependent coefficients. This triangular system was
studied from a point of view of symmetries in [65] (see also [22, 66, 67]). As we have noted in
section 3.2.3, we can relate to W the inverse square of a solution of the KdV linear problem.

Symmetrization. In the case where U is scalar, we set

u = q + r, U = q − r, a = 1 + 2α, b = 2β.

Then we can rewrite (4.14) as a system of two symmetrically coupled pKdV equations


qt = 1
2qxxx + 1

2 rxxx + (1 + α)(q − r)qxx − α(q − r)rxx + (3 + α)q2
x

+ (2 − 2α)qxrx + (1 + α)r2
x + (2 + 4α)(q − r)2qx + β(q − r)4,

rt = 1
2qxxx + 1

2 rxxx + α(q − r)qxx − (1 + α)(q − r)rxx + (1 + α)q2
x

+ (2 − 2α)qxrx + (3 + α)r2
x + (2 + 4α)(q − r)2rx + β(q − r)4.

(4.50)

This system is identical to (12) in [25]. Foursov claimed in [25] that this system was either
reduced to the representative case α = 0 (a = 1) or decoupled by a linear change of dependent
variables. However, in fact this is not true. As far as we consider a linear change of variables,
we need one more representative case, α = − 1

2 (a = 0), in which (4.50) cannot be decoupled.
Therefore, we can say that (at least) one system is missing from the final list of Foursov–Olver
given in [26].

4.2.10. System (4.15). System (4.15) is merely a potential form of the Jordan KdV system
(3.4). We see in section 4.2.22 that this system is also connected with system (4.27) through
a Miura-type transformation.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = 1

2
(q + r), U = i

2
(q − r).

Then, (4.15) is decoupled into two pKdV equations{
qt = qxxx + 3q2

x ,

rt = rxxx + 3r2
x .

This corresponds to (27) in [25].
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4.2.11. System (4.16). System (4.16) is connected with system (4.28) through a Miura-type
transformation. We discuss the integrability of these two systems in section 4.2.23.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U =
√

3(q − r).

Then we can rewrite (4.16) as a system of two symmetrically coupled pKdV equations{
qt = qxxx + 3(q − r)qxx + 3(qx + rx)qx + 3(q − r)2qx,

rt = rxxx − 3(q − r)rxx + 3(qx + rx)rx + 3(q − r)2rx.

This system coincides with (34) in [25] or (3.9) in [26].

4.2.12. System (4.17). System (4.17) is connected with system (4.29) through a Miura-type
transformation. We discuss the integrability of these two systems in section 4.2.24.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = 1
2 (q + r), U =

√
6

2 (q − r).

Then we can rewrite (4.17) as a system of two symmetrically coupled pKdV equations{
qt = qxxx + 3(q − r)qxx + 3q2

x + 3(q − r)2qx,

rt = rxxx − 3(q − r)rxx + 3r2
x + 3(q − r)2rx.

This system coincides with (28) in [25] or (3.8) in [26].

4.2.13. System (4.18). System (4.18) is connected with system (4.30) through a Miura-type
transformation. We discuss the integrability of these two systems in section 4.2.25.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U =
√

3(q − r).

Then we can rewrite (4.18) as a system of two symmetrically coupled pKdV equations{
qt = − 1

2qxxx + 3
2 rxxx − 6(q − r)rxx + 6r2

x + 12(q − r)2rx + 3(q − r)4,

rt = 3
2qxxx − 1

2 rxxx + 6(q − r)qxx + 6q2
x + 12(q − r)2qx + 3(q − r)4.

This system is identical to (13) in [25] with α = 6. Thus, it is equivalent to (41) in [25] or
(3.12) in [26], up to a linear change of dependent variables.

4.2.14. System (4.19). For system (4.19), if we introduce a new variable w by

w ≡ ux + 2〈U,U 〉, (4.51)

it solves the KdV equation

wt = wxxx + 2wwx. (4.52a)

Therefore, system (4.19) is reduced to a triangular form. The equation for U is rewritten in
terms of w as

Ut = 4Uxxx + wxU + 2wUx. (4.52b)

We note that the vector equation (4.52b) is of the same form as the time part of the linear
problem for the KdV equation (4.52a). This relation between system (4.19) and the KdV
equation resembles the relation between the fifth-order symmetry of system (4.11) and
the Kaup–Kupershmidt equation shown in section 4.2.6. A recursion operator and a Lax
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representation for the triangular system (4.52) were given in [67] and [24], respectively. Once
we obtain w(x, t) and U(x, t), we can determine u(x, t) by using (4.51).

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = 6(q + r), U =
√

3i(q − r).

Then we can rewrite (4.19) as a system of two symmetrically coupled pKdV equations


qt = 5
2qxxx − 3

2 rxxx + 6(q − r)qxx + 6q2
x + 12qxrx − 6r2

x

− 12(q − r)2(qx − rx) − 3(q − r)4,

rt = − 3
2qxxx + 5

2 rxxx − 6(q − r)rxx − 6q2
x + 12qxrx + 6r2

x

+ 12(q − r)2(qx − rx) − 3(q − r)4.

This system coincides with (42) in [25] or (3.13) in [26].

4.2.15. System (4.20). For system (4.20), if we introduce a new variable w by

w ≡ −ux + 1
2u2 − 1

2 〈U,U 〉, (4.53)

it solves the KdV equation

wt = wxxx − 3wwx. (4.54a)

Therefore, system (4.20) is reduced to a triangular form. Still, it is a very interesting system.
To see this, we rewrite the equation for u in terms of w as

ut = −2u2
x + u2ux − 3wux − wxu − wxx. (4.54b)

Then, the reduction w = 0 changes this equation to a nontrivial closed equation for u. With a
rescaling of variables, it reads

ut = ux(ux − u2). (4.55)

Equation (4.55) possesses an infinite set of commuting symmetries

uτn
= ux(ux − u2)n, n ∈ R.

We can easily obtain a travelling-wave solution of (4.55) with two arbitrary constants [68],
which is called a complete solution in the theory of partial differential equations. However,
we do not know any explicit formula for the general solution of (4.55). Using (4.53), we can
rewrite the equation for U as a linear equation with a (u,w)-dependent coefficient.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U = q − r.

Then we can rewrite (4.20) as a system of two symmetrically coupled mKdV equations


qt = 1
2qxxx + 1

2 rxxx + 1
2 (q − r)(qxx − rxx) − (qx − rx)rx

+ (q2 − 5qr)qx − (q2 + qr)rx,

rt = 1
2qxxx + 1

2 rxxx + 1
2 (q − r)(qxx − rxx) + (qx − rx)qx

− (qr + r2)qx + (−5qr + r2)rx.

This system coincides with (57) in [25] or (3.18) in [26], up to a scaling of variables.

4.2.16. System (4.21). In system (4.21), u and 〈U,U 〉 satisfy the same equations as in
system (4.20). Thus, if we define w by (4.53), we obtain (4.54a) and (4.54b) again. The only
difference between the two systems (4.21) and (4.20) lies in the forms of equations for U,
which can be rewritten as linear equations with (u,w)-dependent coefficients.
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Symmetrization. In the case where U is scalar, (4.21) is identical to (4.20). Thus, through
symmetrization, we just obtain the same result as in section 4.2.15.

4.2.17. System (4.22). System (4.22) has already been obtained in [69] as a reduction of a
bi-Hamiltonian system (see also [70]). If we introduce a new variable w by

w ≡ −ux + 1
2u2 − 1

2 〈U,U 〉,
it solves the KdV equation

wt = wxxx − 3wwx. (4.56)

Therefore, system (4.22) is reduced to a triangular form. Substituting 1
2 〈U,U 〉 = −ux + 1

2u2 −
w into the equations for u and U respectively, we obtain{

ut = −(wu + wx)x,

Ut = −(wU)x.

Thus, the reduction w = 0 is trivial in this system. We mention again (cf section 4.2.9) that
the above equation for U coupled to the KdV equation (4.56) was studied in [65].

Remark. Actually, a one-parameter deformation of system (4.22),{
ut = 3aux + uxxx − 3

2u2ux + 1
2ux〈U,U 〉 + u〈U,Ux〉 + 〈U,Uxx〉 + 〈Ux,Ux〉,

Ut = aUx + uxxU + uxUx − uuxU − 1
2u2Ux + 1

2 〈U,U 〉Ux + 〈U,Ux〉U,
(4.57)

is still integrable. Indeed, if we introduce w in this case by

w ≡ −a − ux + 1
2u2 − 1

2 〈U,U 〉,
system (4.57) is changed into the following system:{

wt = wxxx − 3wwx + 2a〈U,Ux〉,
Ut = −(wU)x.

When a �= 0, this system coincides with the multi-component Zakharov–Ito system (3.5), up
to a scaling of variables.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U = q − r.

Then we can rewrite (4.22) as a system of two symmetrically coupled mKdV equations{
qt = 1

2qxxx + 1
2 rxxx + (q − r)qxx + (qx − rx)qx − 4qrqx − 2q2rx,

rt = 1
2qxxx + 1

2 rxxx − (q − r)rxx − (qx − rx)rx − 2r2qx − 4qrrx.

This system coincides with (58) in [25] or (3.19) in [26].

4.2.18. System (4.23). For system (4.23), if we introduce a new variable w by

w ≡ −ux + 1
2u2 − 1

2 〈U,U 〉,
it satisfies the KdV equation

wt = wxxx − 3wwx. (4.58a)

Therefore, system (4.23) is reduced to a triangular form. The equation for u is rewritten in
terms of w as

ut = −u2ux + 1
2u4 − wxx + wux − wxu − 2wu2 + 2w2. (4.58b)
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The triangular system (4.58) possesses (at least) two higher symmetries. The first higher
symmetry is given by


wt5 = wxxxxx − 5wwxxx − 10wxwxx + 15
2 w2wx,

ut5 = − 1
2u4w + 2u2w2 − 2w3 + u2wux − 1

2w2ux − u3wx + 5uwwx

+ 2uuxwx + 3w2
x − u2wxx + 5wwxx + uxwxx − uwxxx − wxxxx,

which obviously vanishes under the reduction w = 0. Similarly, the second one vanishes
under the same reduction. On the other hand, the reduction w = 0 changes (4.58) to a
nontrivial closed equation for u,

ut = −u2ux + 1
2u4.

As far as we could check with the help of a computer, this equation seems to have no polynomial
higher symmetry. We can construct its general solution in implicit form using the method of
characteristic curves.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U = q − r.

Then we can rewrite (4.23) as a system of two symmetrically coupled mKdV equations


qt = 1
2qxxx + 1

2 rxxx + 1
2 (q − r)(qxx − rxx) − (qx − rx)rx

− (3qr + r2)qx + (−3qr + r2)rx + 1
2 (q − r)3q,

rt = 1
2qxxx + 1

2 rxxx + 1
2 (q − r)(qxx − rxx) + (qx − rx)qx

+ (q2 − 3qr)qx − (q2 + 3qr)rx − 1
2 (q − r)3r.

This system coincides with (61) in [25] or (3.20) in [26], up to a scaling of variables.

4.2.19. System (4.24). For system (4.24), if we introduce a new variable w by

w ≡ −ux + 1
2u2 − 1

2 〈U,U 〉, (4.59)

it satisfies the KdV equation

wt = wxxx − 3wwx.

Therefore, system (4.24) is rewritten in a triangular form. Substituting 1
2 〈U,U 〉 = −ux +

1
2u2 − w into the equations for u and U respectively, we obtain{

ut = −wxu − 1
2wu2 − wxx + w2,

Ut = − 1
2 (wx + wu)U.

(4.60)

Thus, the reduction w = 0 is trivial in this system. We note that in (4.60) no term involves
x-derivatives of u,U such as ux, Ux, uxx, Uxx . Then, for a given solution of the KdV equation
w(x, t), the equation for u(x, t) can be regarded as a Riccati equation with x fixed. Once we
obtain w(x, t) and u(x, t), we can integrate the equation for U as

U(x, t) = exp

(
−1

2

∫ t

0
(wx + wu) dt ′

)
U(x, 0).

Remark. Actually, system (4.24) is the third-order symmetry of a nontrivial first-order system,{
ut1 = ux + 1

2 〈U,U 〉,
Ut1 = 1

2uU.
(4.61)
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For this system, w defined by (4.59) obeys the linear equation wt1 = wx and the equation
for u is rewritten as ut1 = 1

2u2 − w. System (4.61) in the N = 1 case as well as its higher
symmetries was studied in [56, 71, 72] (see also [73] for its soliton-like solutions).

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U = q − r.

Then we can rewrite (4.24) as a system of two symmetrically coupled mKdV equations


qt = 1
2qxxx + 1

2 rxxx + 1
4 (q − r)(3qxx − rxx) + 1

2 (qx − rx)
2

+ 1
2 (q2 − 6qr − r2)qx − (q2 + 2qr)rx − q2r(q − r),

rt = 1
2qxxx + 1

2 rxxx + 1
4 (q − r)(qxx − 3rxx) + 1

2 (qx − rx)
2

− (2qr + r2)qx − 1
2 (q2 + 6qr − r2)rx + qr2(q − r).

This system coincides with (23) in [25] with α = 1, up to a scaling of dependent variables.
Thus, it is equivalent to (62) in [25] or (3.21) in [26], up to a linear change of variables.

4.2.20. System (4.25). System (4.25) is just a disguised form of a single vector equation.
Indeed, if we introduce an (N + 1)-component vector W by W ≡ (u,U) = (u,U1, . . . , UN),
system (4.25) can be rewritten in the form

Wt = Wxxx + 〈W,W 〉Wx.

This is a well-known vector mKdV equation and its integrability has been established in the
literature [27, 28, 74, 75].

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = 1

2
(q + r), U = i

2
(q − r).

Then we can rewrite (4.25) as a system of two symmetrically coupled mKdV equations{
qt = qxxx + qrqx,

rt = rxxx + qrrx.

This system is known as (the non-reduced form of) the complex mKdV equation [76]. It is
identical to (43) in [25] or (3.14) in [26] with a correction of misprints.

4.2.21. System (4.26). System (4.26) is also a disguised form of a single vector equation.
Indeed, if we introduce an (N + 1)-component vector W by W ≡ (u,U) = (u,U1, . . . , UN),
system (4.26) can be rewritten in the form

Wt = Wxxx + 〈W,W 〉Wx + 〈W,Wx〉W.

This is another well-known vector mKdV equation, for which a Lax representation was given
in [77] for the N = 1 case and in [78] for the general N case.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U = i(q − r).

Then we can rewrite (4.26) as a system of two symmetrically coupled mKdV equations{
qt = qxxx + 6qrqx + 2q2rx,

rt = rxxx + 2r2qx + 6qrrx.
(4.62)

This system coincides with (48) in [25] or (3.15) in [26], up to a scaling of variables.
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4.2.22. System (4.27). System (4.27) is known as a Jordan mKdV system [27]. Let us briefly
summarize its integrability. It is well known that the matrix mKdV equation,

Qt = Qxxx − 3(QxQ
2 + Q2Qx), (4.63)

admits a Lax representation [52, 75, 78, 79]. Then, system (4.27) is also integrable, because
it is obtained from (4.63) through the following reduction:

Q = u1 +
N∑

j=1

Uj ej , {ei , ej }+ = −2δij 1.

We mention that (4.27) admits a generalization to a system for two vector unknowns preserving
the integrability [29].

Relation to systems (3.4) and (4.15). If we define new variables w and W by [27]{
w ≡ ±ux − u2 + 〈U,U 〉,
W ≡ Ux ∓ 2uU,

they satisfy the following system:{
wt = wxxx + 3(w2 − 〈W,W 〉)x,
Wt = Wxxx + 6(wW)x.

This system coincides with the Jordan KdV system (3.4) and, through potentiation of it, we
obtain system (4.15).

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = 1

2
(q + r), U = i

2
(q − r).

Then (4.27) is decoupled into two mKdV equations{
qt = qxxx − 6q2qx,

rt = rxxx − 6r2rx.

This corresponds to (50) in [25].

4.2.23. System (4.28). We note that through introduction of a new scalar variable w by

w ≡ ux − u2,

system (4.28) is transformed to a system of coupled KdV–mKdV type,{
wt = wxxx + 6wwx + wx〈U,U 〉 + 2w〈U,U 〉x + 1

2 〈U,U 〉xxx,

Ut = Uxxx + 3(wU)x + 〈U,U 〉Ux + 3
2 〈U,U 〉xU.

(4.64)

Let us demonstrate that system (4.28) admits a Lax representation. We consider a pair of
linear equations for a column-vector function ψ,

ψx = Ûψ, ψt = V̂ ψ,

with the matrices Û and V̂ of the following form:

Û =
(−iζ Il Q

R iζ Im + P

)
, (4.65a)

V̂ =




−4iζ 3Il − 2iζQR

+ QxR − QRx + 2QPR

4ζ 2Q + 2iζ(Qx + QP) − Qxx

− 2QxP − QPx + 2QRQ − QP 2

4ζ 2R + 2iζ(−Rx + PR)

−Rxx + PxR + 2PRx

+ 2RQR − P 2R

4iζ 3Im + 2iζRQ − Pxx + RxQ

−RQx + PxP − PPx + 2PRQ

+ 2RQP − P 3 − 3gxP


 . (4.65b)
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Here, ζ is the spectral parameter, Il and Im are the l × l and m×m unit matrices, respectively,
Q, R and P are l × m,m × l and m × m matrices, respectively, and g is a scalar function. The
compatibility condition ψxt = ψtx implies the so-called zero-curvature condition,

Ût − V̂x + Û V̂ − V̂ Û = O.

Then, substituting (4.65) into this condition, we obtain a system of three matrix equations


Qt + Qxxx + 3(QxP )x − 3QxRQ − 3QRQx + 3QxP
2 + 3QPxP − 3gxQP

= O,

Rt + Rxxx − 3(PRx)x − 3RxQR − 3RQRx + 3P 2Rx + 3PPxR + 3gxPR

= O,

Pt + Pxxx + 3(gxP )x − 3(PRQ + RQP)x + 3PPxP + 3P 2RQ − 3RQP 2

= O.

(4.66)

We note that this system admits the reduction R = tQ, tP = −P , where the superscript t

denotes the transposition. In particular, if we choose


Q = (u,W1, . . . , WN) ≡ (u,W),

R =




u

W1

...

WN


 =

(
u

tW

)
,

P =




0 V1 · · · VN

−V1

...

−VN

O


 ≡

(
0 V

−tV O

)
,

system (4.66) is reduced to the system


ut + uxxx − 6u2ux − 3ux(〈W,W 〉 + 〈V, V 〉) − 3u(〈W,Wx〉 + 〈V, Vx〉)
+ 3gx〈W,V 〉 − 3〈Wx, V 〉x = 0,

Wt + Wxxx + 3(uxV )x − 3ugxV − 3uuxW − 3u2Wx − 3〈W,W 〉Wx

− 3〈W,Wx〉W − 3〈W,V 〉xV = 0,

Vt + Vxxx + 3(gxV )x − 3(u2V )x − 3(〈W,V 〉W)x − 3〈V, Vx〉V
− 3u〈V, V 〉W + 3u〈W,V 〉V = 0,

(4.67)

together with one constraint

(u tV W − u tWV )x − 〈W,V 〉(tV W − tWV ) = O.

When W and V are scalar, i.e. N = 1, this constraint is satisfied automatically and we obtain
a three-component mKdV system. There is another case, the case W = V , for which the
constraint is satisfied. Then, if we set

g = u, W = V = i√
3
U,

and change the sign of time t (t → −t), system (4.67) collapses to system (4.28).

Relation to system (4.16). If we introduce a new scalar variable v by

v ≡ ux − u2 + 1
3 〈U,U 〉,

system (4.28) is changed into the following system:{
vt = (vxx + 3v2 + v〈U,U 〉 + 〈U,Uxx〉)x,
Ut = Uxxx + 3vxU + 3vUx + 〈U,Ux〉U.

(4.68)
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Then, it is straightforward to obtain (4.16) (for û and U) from (4.68) through potentiation
v = ûx . It should be mentioned here that the authors encountered two papers [80, 81] on the
integrability of (4.68) in the case of scalar U, after they had obtained all the presented results
independently.

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = q + r, U =
√

3(q − r).

Then we can rewrite (4.28) as a system of two symmetrically coupled mKdV equations{
qt = [qxx + 3(q − r)qx + q3 − 12q2r + 3qr2]x,
rt = [rxx − 3(q − r)rx + 3q2r − 12qr2 + r3]x.

This system coincides with (55) in [25] or (3.17) in [26]. Moreover, if we introduce new
variables q̂ and r̂ by

q̂ ≡
√

3iq exp

(∫ x

(q − r) dx ′
)

, r̂ ≡
√

3ir exp

(
−

∫ x

(q − r) dx ′
)

,

they satisfy the system of coupled mKdV equations (4.62).

4.2.24. System (4.29). Through introduction of a new scalar variable w by

w ≡ ux − u2,

system (4.29) is transformed to a system that looks very similar to (4.64),{
wt = wxxx + 6wwx + wx〈U,U 〉 + 2w〈U,U 〉x + 1

2 〈U,U 〉xxx,

Ut = Uxxx + 6(wU)x + 〈U,U 〉Ux + 2〈U,U 〉xU.
(4.69)

System (4.69) is a multi-component generalization of a flow of the Jaulent–Miodek hierarchy
[82]. Let us demonstrate that (4.69) admits a Lax representation. We consider a pair of linear
equations for a column-vector function ψ,{

ψxx + (Q + ζR)ψ = ζ 2ψ,

ψt = (
4ζ 2I + 2ζR + 2Q + 3

2R2
)
ψx − [

ζRx + Qx + 3
4 (R2)x

]
ψ.

(4.70)

Here, ζ is the spectral parameter, and Q and R are square matrices with the same dimension.
The compatibility condition ψxxt = ψtxx for (4.70) implies a system of two matrix equations{

Qt = Qxxx + 3(Q2)x + 3
4 (R2)xxx + 3

2R2Qx + 3
4 [Q(R2)x + 3(R2)xQ],

Rt = Rxxx + 3(QR + RQ)x + 3
4 [3(R2)xR + R(R2)x + 2R2Rx],

(4.71)

together with one constraint

[Q,R2] = O.

If we consider the reduction

Q = w1, R =
√

6

3
i

N∑
j=1

Uj ej , {ei , ej }+ = −2δij 1,

the constraint is automatically satisfied and system (4.71) collapses to system (4.69). This
Lax representation for (4.69) can be rewritten as that for (4.29) [83].

Relation to system (4.17). If we introduce a new scalar variable v by

v ≡ ux − u2 + 1
6 〈U,U 〉, (4.72)
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system (4.29) is changed into the following system:{
vt = (

vxx + 3v2 + 2v〈U,U 〉 + 〈U,Uxx〉 + 1
2 〈Ux,Ux〉

)
x
,

Ut = Uxxx + 6vxU + 6vUx + 2〈U,Ux〉U.
(4.73)

Then, it is straightforward to obtain (4.17) (for û and U) from (4.73) through potentiation
v = ûx .

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = 1
2 (q + r), U =

√
6

2 (q − r).

Then we can rewrite (4.29) as a system of two symmetrically coupled mKdV equations{
qt = [qxx + 3(q − r)qx + q3 − 6q2r + 3qr2]x,

rt = [rxx − 3(q − r)rx + 3q2r − 6qr2 + r3]x.

This system coincides with (51) in [25] or (3.16) in [26]. It is known as a flow of the modified
Jaulent–Miodek hierarchy [83] (see also (7.37) in [84]). While elaborating on this paper, the
authors encountered one paper [85] on the three-component generalization of this flow ((4.29)
with N = 2).

4.2.25. System (4.30). For system (4.30), if we define new variables w and W by{
w ≡ ux + u2 + 1

6 〈U,U 〉,
W ≡ Ux + 2uU,

(4.74)

they satisfy the following system:{
wt = wxxx − 6wwx + 2〈W,Wx〉,
Wt = −2Wxxx + 6wWx.

(4.75)

This system coincides with the multi-component Hirota–Satsuma system (3.6), up to a scaling
of variables. The Miura map (4.74) is a multi-component generalization of that for the case
of scalar U in [43, 44] and that for the case of two-component vector U in [61].

Relation to system (4.18). If we introduce a new scalar variable v by

v ≡ ux − u2 − 1
6 〈U,U 〉, (4.76)

system (4.30) is changed into the following system (cf (4.3) in [86]):{
vt = (

vxx + 3v2 + 4v〈U,U 〉 + 2〈U,Uxx〉 + 〈Ux,Ux〉 + 2
3 〈U,U 〉2

)
x
,

Ut = −2Uxxx − 6vxU − 6vUx − 4〈U,Ux〉U.
(4.77)

Then, it is straightforward to obtain (4.18) (for û and U) from (4.77) through potentiation
v = ûx . Combining (4.76) and (4.74), we obtain the relation v + w = 2ux , and consequently,

û +
∫ x

w dx ′ = 2u.

Using this relation, we can also rewrite (4.74) as a transformation between system (4.18) and
the multi-component Hirota–Satsuma system (4.75).

Symmetrization. In the case where U is scalar, we consider the linear change of variables

u = − 1
2 (q + r), U =

√
6

2 i(q − r).

Then we can rewrite (4.30) as a system of two symmetrically coupled mKdV equations{
qt = [− 1

2qxx + 3
2 rxx + 3(q − r)qx − 2r3

]
x
,

rt = [
3
2qxx − 1

2 rxx − 3(q − r)rx − 2q3
]
x
.



7720 T Tsuchida and T Wolf

This system is identical to (63) in [25] or (3.22) in [26]. It was found in connection with the
Kac–Moody Lie algebras and written in a Hamiltonian form about 20 years ago (cf the C

(1)
2

case in [43] or the B
(1)
2 case in [44]).

5. The case λ1 = λ2 = 1
2 : coupled Ibragimov–Shabat equations

In this section, we classify second-order and third-order systems in the λ1 = λ2 = 1
2

(Ibragimov–Shabat weighting [36]) case. In the first part (section 5.1), we present a complete
list of such systems with a specific order symmetry. In the second part (section 5.2), we prove
that the listed systems are linearizable.

5.1. List of systems with a higher symmetry

The general ansatz for a λ1 = λ2 = 1
2 homogeneous evolutionary system of second order for

a scalar function u and a vector function U takes the form


ut2 = a1uxx + a2u
2ux + a3u

5 + a4ux〈U,U 〉 + a5u〈U,Ux〉
+ a6u

3〈U,U 〉 + a7u〈U,U 〉2,

Ut2 = a8Uxx + a9uuxU + a10u
2Ux + a11u

4U + a12〈U,U 〉Ux

+ a13〈U,Ux〉U + a14u
2〈U,U 〉U + a15〈U,U 〉2U.

(5.1)

The following constraints guarantee the order to be 2 and the system not to be triangular:

(a1, a8) �= (0, 0), (a4, a5, a6, a7) �= (0, 0, 0, 0), (a9, a10, a11, a14) �= (0, 0, 0, 0).

Similarly, the general ansatz for a third-order system takes the form


ut3 = b1uxxx + b2u
2uxx + b3uu2

x + b4u
4ux + b5u

7 + b6uxx〈U,U 〉
+ b7ux〈U,Ux〉 + b8u〈Ux,Ux〉 + b9u〈U,Uxx〉 + b10u

2ux〈U,U 〉
+ b11u

3〈U,Ux〉 + b12u
5〈U,U 〉 + b13ux〈U,U 〉2

+ b14u〈U,U 〉〈U,Ux〉 + b15u
3〈U,U 〉2 + b16u〈U,U 〉3,

Ut3 = b17Uxxx + b18uuxxU + b19u
2
xU + b20uuxUx + b21u

2Uxx

+ b22u
3uxU + b23u

4Ux + b24u
6U + b25〈U,U 〉Uxx + b26〈U,Ux〉Ux

+ b27〈Ux,Ux〉U + b28〈U,Uxx〉U + b29uux〈U,U 〉U
+ b30u

2〈U,U 〉Ux + b31u
2〈U,Ux〉U + b32u

4〈U,U 〉U
+ b33〈U,U 〉2Ux + b34〈U,U 〉〈U,Ux〉U + b35u

2〈U,U 〉2U

+ b36〈U,U 〉3U,

(5.2)

for which the following constraints guarantee the order to be 3 and the system not to
be triangular: (b1, b17) �= (0, 0) and at least one of b6, . . . , b16 and one of b18, . . . , b24,

b29, . . . , b32, b35 must not vanish. However, when we consider a third-order symmetry for a
second-order system, we relax these constraints as follows (cf section 2): (b1, b17) �= (0, 0)

and at least one of b1, . . . , b16 and one of b17, . . . , b36 must not vanish.

Proposition 5.1. No second-order system of the form (5.1) with a third-order symmetry of the
form (5.2) or a fourth-order symmetry exists.

Theorem 5.2. Any third-order system of the form (5.2) with a fifth-order symmetry has to
coincide with either of the following two systems up to a scaling of t3, x, u,U (we omit the
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subscript of t3):


ut = (a + 1)(uxxx + 3u2uxx + 9uu2
x + 3u4ux + 3uxx〈U,U 〉

+ 6ux〈U,Ux〉 + 3ux〈U,U 〉2) + 2au〈U,Uxx〉
+ (2a + 3)u〈Ux,Ux〉 + (10a + 6)uxu

2〈U,U 〉 + 2au3〈U,Ux〉
+ 6au〈U,U 〉〈U,Ux〉 + au5〈U,U 〉 + 2au3〈U,U 〉2 + au〈U,U 〉3,

Ut = Uxxx + 3〈U,U 〉Uxx + 6〈U,Ux〉Ux + 3〈Ux,Ux〉U + 3〈U,U 〉2Ux

− 2auxxuU + (a + 3)u2
xU + 6uuxUx + 3u2Uxx − 6auxu

3U

+ 3u4Ux − 2auxu〈U,U 〉U − 4au2〈U,Ux〉U + 6u2〈U,U 〉Ux

− au6U − 2au4〈U,U 〉U − au2〈U,U 〉2U, a is arbitrary,

(5.3)




ut = uxxx + 3u2uxx + 9uu2
x + 3u4ux + 3uxx〈U,U 〉 + 6ux〈U,Ux〉

+ 2u〈U,Uxx〉 + 2u〈Ux,Ux〉 + 10uxu
2〈U,U 〉 + 2u3〈U,Ux〉

+ 3ux〈U,U 〉2 + 6u〈U,U 〉〈U,Ux〉 + u5〈U,U 〉 + 2u3〈U,U 〉2 + u〈U,U 〉3,

Ut = −2uxxuU + u2
xU − 6uxu

3U − 2uxu〈U,U 〉U − 4u2〈U,Ux〉U
− u6U − 2u4〈U,U 〉U − u2〈U,U 〉2U.

(5.4)

Both system (5.3) and system (5.4) admit the reduction U = 0. From this viewpoint, they are
considered as generalizations of the Ibragimov–Shabat equation [36]. In addition, system (5.3)
admits the reduction u = 0 which changes it to a vector analogue of the Ibragimov–Shabat
equation [15, 34],

Ut = Uxxx + 3〈U,U 〉Uxx + 6〈U,Ux〉Ux + 3〈Ux,Ux〉U + 3〈U,U 〉2Ux. (5.5)

We can linearize (5.3) and (5.4) through the same change of dependent variables. In fact, both
of them are third-order symmetries of a nontrivial first-order system,{

ut1 = ux + u〈U,U 〉,
Ut1 = −u2U,

(5.6)

which is naturally linearizable in the same way.

5.2. Integrability of systems (5.3) and (5.4)

5.2.1. System (5.3). We note that system (5.3) possesses the following conservation law:

(u2 + 〈U,U 〉)t = [
(a + 1)

(
2uuxx − u2

x + 6u3ux + u6
)

+ 2〈U,Uxx〉 − 〈Ux,Ux〉
+ (4a + 6)u2〈U,Ux〉 + (2a + 6)uxu〈U,U 〉 + (2a + 3)u4〈U,U 〉
+ (a + 3)u2〈U,U 〉2 + 6〈U,U 〉〈U,Ux〉 + 〈U,U 〉3

]
x
. (5.7)

Then, if we introduce new variables w and W by


w ≡ u exp

(∫ x

(u2 + 〈U,U 〉) dx ′
)

,

W ≡ U exp

(∫ x

(u2 + 〈U,U 〉) dx ′
)

,

(5.8)

they satisfy a pair of linear equations{
wt = (a + 1)wxxx,

Wt = Wxxx.

If we set U = 0 or u = 0, (5.8) is reduced to the linearizing transformation for the Ibragimov–
Shabat equation [3, 87] and that for its vector analogue (5.5), respectively.
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5.2.2. System (5.4). System (5.4) is obtained from (5.3) by rescaling t appropriately and
taking the limit a → ∞. As this fact implies in combination with (5.7), system (5.4) possesses
the following conservation law:

(u2 + 〈U,U 〉)t = (
2uuxx − u2

x + 6u3ux + u6 + 2uxu〈U,U 〉
+ 4u2〈U,Ux〉 + 2u4〈U,U 〉 + u2〈U,U 〉2

)
x
.

Then, by the same change of variables as in section 5.2.1,


w = u exp

(∫ x

(u2 + 〈U,U 〉) dx ′
)

,

W = U exp

(∫ x

(u2 + 〈U,U 〉) dx ′
)

,

system (5.4) is decoupled into one linear equation and one trivial equation{
wt = wxxx,

Wt = 0.

6. The case λ1 = 1
3 , λ2 = 2

3 : negative results

In this section, we search for second-order and third-order systems with a specific order
symmetry in the case of λ1 = 1

3 , λ2 = 2
3 . However, the results turn out to be negative, as is

shown below.
The general ansatz for a λ1 = 1

3 , λ2 = 2
3 homogeneous evolutionary system of second

order for a scalar function u and a vector function U takes the form{
ut2 = a1uxx + a2u

3ux + a3u
7 + a4〈U,Ux〉 + a5u

3〈U,U 〉,
Ut2 = a6Uxx + a7u

2uxU + a8u
3Ux + a9u

6U + a10u
2〈U,U 〉U.

(6.1)

The following constraints guarantee the order to be 2 and the system not to be triangular:

(a1, a6) �= (0, 0), (a4, a5) �= (0, 0), (a7, a8, a9, a10) �= (0, 0, 0, 0).

Similarly, the general ansatz for a third-order system takes the form


ut3 = b1uxxx + b2u
3uxx + b3u

2u2
x + b4u

6ux + b5u
10 + b6〈U,Uxx〉

+ b7〈Ux,Ux〉 + b8u
2ux〈U,U 〉 + b9u

3〈U,Ux〉 + b10u
6〈U,U 〉

+ b11u
2〈U,U 〉2,

Ut3 = b12Uxxx + b13u
2uxxU + b14uu2

xU + b15u
2uxUx + b16u

3Uxx

+ b17u
5uxU + b18u

6Ux + b19u
9U + b20uux〈U,U 〉U

+ b21u
2〈U,U 〉Ux + b22u

2〈U,Ux〉U + b23u
5〈U,U 〉U

+ b24u〈U,U 〉2U,

(6.2)

for which the following constraints guarantee the order to be 3 and the system not to be
triangular: (b1, b12) �= (0, 0) and at least one of b6, . . . , b11 and one of b13, . . . , b24 must
not vanish. However, when we consider a third-order symmetry for a second-order system,
we relax these constraints as follows (cf section 2): (b1, b12) �= (0, 0) and at least one of
b1, . . . , b11 and one of b12, . . . , b24 must not vanish.

Proposition 6.1. No second-order system of the form (6.1) with a third-order symmetry of the
form (6.2) or a fourth-order symmetry exists.

Proposition 6.2. No third-order system of the form (6.2) with a fifth-order symmetry exists.
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7. The case λ1 = 2
3 , λ2 = 1

3

In this section, we classify second-order and third-order systems in the case of λ1 = 2
3 , λ2 = 1

3 .
In the first part (section 7.1), we present complete lists of such systems with a specific order
symmetry. In the second part (section 7.2), we prove that the listed systems are linearizable.

7.1. Lists of systems with a higher symmetry

The general ansatz for a λ1 = 2
3 , λ2 = 1

3 homogeneous evolutionary system of second order
for a scalar function u and a vector function U takes the form


ut2 = a1uxx + a2u
4 + a3〈U,Uxx〉 + a4〈Ux,Ux〉 + a5u

3〈U,U 〉
+ a6u

2〈U,U 〉2 + a7u〈U,U 〉3 + a8〈U,U 〉4,

Ut2 = a9Uxx + a10u
3U + a11u

2〈U,U 〉U + a12u〈U,U 〉2U + a13〈U,U 〉3U.

(7.1)

The following constraints guarantee the order to be 2 and the system not to be triangular:

(a1, a3, a9) �= (0, 0, 0), (a3, a4, a5, a6, a7, a8) �= (0, 0, 0, 0, 0, 0),

(a10, a11, a12) �= (0, 0, 0).

Similarly, the general ansatz for a third-order system takes the form


ut3 = b1uxxx + b2u
3ux + b3〈U,Uxxx〉 + b4〈Ux,Uxx〉 + b5u

2ux〈U,U 〉
+ b6u

3〈U,Ux〉 + b7uux〈U,U 〉2 + b8u
2〈U,U 〉〈U,Ux〉

+ b9ux〈U,U 〉3 + b10u〈U,U 〉2〈U,Ux〉 + b11〈U,U 〉3〈U,Ux〉,
Ut3 = b12Uxxx + b13u

2uxU + b14u
3Ux + b15uux〈U,U 〉U

+ b16u
2〈U,U 〉Ux + b17u

2〈U,Ux〉U + b18ux〈U,U 〉2U

+ b19u〈U,U 〉2Ux + b20u〈U,U 〉〈U,Ux〉U + b21〈U,U 〉3Ux

+ b22〈U,U 〉2〈U,Ux〉U,

(7.2)

for which the following constraints guarantee the order to be 3 and the system not to be
triangular: (b1, b3, b12) �= (0, 0, 0) and at least one of b3, . . . , b11 and one of b13, . . . , b20 must
not vanish. However, when we consider a third-order symmetry for a second-order system,
we relax these constraints as follows (cf section 2): (b1, b3, b12) �= (0, 0, 0) and at least one
of b1, . . . , b11 and one of b12, . . . , b22 must not vanish.

Theorem 7.1. Any second-order system of the form (7.1) with a third-order symmetry of the
form (7.2) has to coincide with the following system up to a scaling of t2, x, u,U (we omit the
subscript of t2):{

ut = uxx + 2〈U,Uxx〉 + 2〈Ux,Ux〉 + 2u〈U,U 〉3 + 2〈U,U 〉4,

Ut = −u〈U,U 〉2U − 〈U,U 〉3U.
(7.3)

Theorem 7.2. Any second-order system of the form (7.1) with a fourth-order symmetry has to
coincide with either (7.3) or the following system up to a scaling of t2, x, u,U :{

ut = −2〈U,Uxx〉 − 2u3〈U,U 〉 − 6u2〈U,U 〉2 − 6u〈U,U 〉3 − 2〈U,U 〉4,

Ut = Uxx + u3U + 3u2〈U,U 〉U + 3u〈U,U 〉2U + 〈U,U 〉3U.
(7.4)

Theorem 7.3. Any third-order system of the form (7.2) with a fifth-order symmetry has to
coincide with either of the following two systems up to a scaling of t3, x, u,U (we omit the
subscript of t3):{

ut = uxxx + 2〈U,Uxxx〉 + 6〈Ux,Uxx〉 + 2ux〈U,U 〉3 + 4〈U,U 〉3〈U,Ux〉,
Ut = −ux〈U,U 〉2U − 2〈U,U 〉2〈U,Ux〉U,

(7.5)
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ut = uxxx + 2〈U,Uxxx〉 + 6〈Ux,Uxx〉 + 2ux〈U,U 〉3 + 4〈U,U 〉3〈U,Ux〉,
Ut = −ux〈U,U 〉2U − 4u〈U,U 〉〈U,Ux〉U + 4u〈U,U 〉2Ux

− 6〈U,U 〉2〈U,Ux〉U + 4〈U,U 〉3Ux.

(7.6)

We note that (7.5) is the third-order symmetry of the second-order system (7.3).

7.2. Integrability of systems (7.3)–(7.6)

7.2.1. Systems (7.3) and (7.5). We present a procedure for solving system (7.3) only, because
its third-order symmetry (7.5) can be solved in the same way. For system (7.3), if we introduce
a new variable w by

w ≡ u + 〈U,U 〉, (7.7)

it solves the linear equation

wt = wxx.

Once we know w(x, t) by solving this equation, we obtain from the relation (〈U,U 〉−2)t = 4w

that

1

〈U(x, t), U(x, t)〉2
= 4

∫ t

0
w(x, t ′) dt ′ +

1

〈U(x, 0), U(x, 0)〉2
.

Then we can determine u(x, t) by using (7.7). Finally, noting the relation
(〈U,U 〉− 1

2 U
)
t
= 0,

we obtain the following expression for U(x, t):

U(x, t) = 1[
1 + 4〈U(x, 0), U(x, 0)〉2

∫ t

0 w(x, t ′) dt ′
] 1

4

U(x, 0).

7.2.2. System (7.4). For system (7.4), we have the relation (u + 〈U,U 〉)t = 0. Thus, we can
set

u + 〈U,U 〉 ≡ φ(x),

where the function φ(x) does not depend on t. Then, the equation for U is rewritten in terms
of φ(x) as

Ut = Uxx + φ3U. (7.8)

The solutions of (7.8) are given by

U(x, t) =
∫

dλ eλt	(x; λ),

where 	(x; λ) is a solution of the ordinary differential equation

	xx + φ3	 = λ	.

The following commutation relation indicates that system (7.4) possesses a polynomial higher
symmetry of every even order (cf [7, 10]):[

∂2
x + φ3, (∂2

x + φ3)n
] = 0, n = 1, 2, . . . .
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7.2.3. System (7.6). For system (7.6), if we introduce a new variable w by

w ≡ u + 〈U,U 〉,
it solves the linear equation

wt = wxxx.

Once we know w(x, t), we obtain from the relation (〈U,U 〉−2)t = 4wx that

1

〈U(x, t), U(x, t)〉2
= 4

∫ t

0
wx(x, t ′) dt ′ +

1

〈U(x, 0), U(x, 0)〉2
. (7.9)

Then, the equation for 〈U,U 〉− 1
2 U can be rewritten as(

1√〈U,U 〉U
)

t

= 4(u + 〈U,U 〉)〈U,U 〉2

(
1√〈U,U 〉U

)
x

= 4w(x, t)

4
∫ t

0 wx(x, t ′) dt ′ + 1
〈U(x,0),U(x,0)〉2

(
1√〈U,U 〉U

)
x

.

The general solution of this equation is given by

1√〈U,U 〉Uj = fj

(
4
∫ t

0
w(x, t ′) dt ′ +

∫ x 1

〈U(x ′, 0), U(x ′, 0)〉2
dx ′

)
, j = 1, 2, . . . , N,

(7.10)

where f1(z), . . . , fN(z) are arbitrary functions of z, except that they must satisfy one constraint,∑N
j=1[fj (z)]2 = 1. Combining (7.10) with (7.9), we arrive at the following formula:

Uj(x, t) = 1

(ξx)
1
4

fj (ξ), j = 1, 2, . . . , N,

where ξ(x, t) ≡ 4
∫ t

0 w(x, t ′) dt ′ +
∫ x〈U(x ′, 0), U(x ′, 0)〉−2 dx ′.

8. Concluding remarks

In this paper, we have presented a classification of integrable evolutionary systems in 1+1
dimensions for one scalar unknown u(x, t) and one vector unknown U(x, t). We focused on
polynomial systems that are homogeneous under a suitable weighting of ∂x, ∂t , u(x, t), U(x, t)

and considered five distinct weightings for u,U relative to a fixed weight of ∂x . Then, with the
help of a computer algebra program, we obtained the complete lists, up to a scaling of variables,
of second-order systems with a third-order or a fourth-order symmetry and third-order systems
with a fifth-order symmetry. We demonstrated the integrability of nearly all listed systems
by constructing a Lax representation or a linearizing transformation or, in some cases, by
identifying an integrable closed subsystem contained in the system under investigation.

Table 4 gives a quick overview of the systems found. Note we use ‘MT’ as an abbreviation
for ‘Miura-type transformation’, including Miura map plus potentiation. In table 4, we set
the weight of ∂x at unity, without any loss of generality. For full details regarding Lax
representations, transformations, references, etc, the reader is referred to the corresponding
part of the paper identified through the equation number. Here, we would like to make a few
remarks on our classification results:

• The most interesting classification results are obtained for the case λ1 = λ2 = 1, namely
the Burgers/pKdV/mKdV weighting. The lists in this case consist of a large number
of systems, which are shown to have a very wide variety of underlying structures. We
compared these lists thoroughly with the lists of two-component systems by Foursov–
Olver [18, 25, 26], refined and generalized their work, as described in the introduction.
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Table 4. An overview of the considered classes with unit weighting of ∂x .

Weights Weights of
(λ1, λ2) ∂t , ∂τ in
of u, U sys., sym. System Comments

(2, 2) 2, 3 None
2, 4 None

3, 5 (3.3)

{
ut = 〈U,Ux〉,
Ut = Uxxx + uxU + 2uUx

multi-component generalization of a
Drinfel’d–Sokolov system [43, 44],
see [45–47]

(3.4)

{
ut = uxxx + 6uux − 6〈U,Ux〉,
Ut = Uxxx + 6uxU + 6uUx

known as a Jordan KdV
system [27, 28, 34, 48]

(3.5)

{
ut = uxxx + 3uux + 3〈U,Ux〉,
Ut = uxU + uUx

multi-component generalization of
Zakharov–Ito system [52, 53], see [54]

(3.6)

{
ut = uxxx + 6uux − 12〈U,Ux〉,
Ut = −2Uxxx − 6uUx

multi-component generalization of
Hirota–Satsuma system [57], see [58]

(1, 1)




2, 3
or

2, 4
(4.3)




ut = 1
3 (1 + 2a)(uxx + 2uux) + 4

3 〈U,Ux〉,
Ut = Uxx + 1

3 (1 − a)uxU + uUx

+ 1
12 (1 − 4a)u2U − 1

3 〈U, U〉U,

a is arbitrary

linearized by an extended
Hopf–Cole transformation

(4.4)

{
ut = uxx + 2uux + 2〈U,Ux〉,
Ut = − 1

2 uxU − 1
2 u2U − 1

2 〈U,U〉U
is scaling limit of (4.3), linearized by
the same transformation

(4.5)

{
ut = uxx + 2uux + 〈U,Ux〉,
Ut = 1

2 uxU + uUx

contains two-component Burgers
system (4.35) as closed subsystem,

integrability unproven

3, 5 (4.6)




ut = a(uxxx + 3uuxx + 3u2
x + 3u2ux)

+ ux〈U,U〉 + 2u〈U,Ux〉 + 2〈U,Uxx〉
+ 2〈Ux, Ux〉,

Ut = Uxxx + 1
2 (1 − a)uxxU + 3

2 uxUx

+ 3
2 uUxx + 3

4 (1 − 2a)uuxU + 3
4 u2Ux

−〈U, Ux〉U + 1
8 (1 − 4a)u3U

− 1
2 u〈U,U〉U, a is arbitrary

is symmetry of (4.3)

(4.7)




ut = uxxx + 3uuxx + 3u2
x + 3u2ux

+ ux〈U,U〉 + 2u〈U,Ux〉 + 2〈U,Uxx〉
+ 2〈Ux, Ux〉,

Ut = − 1
2 uxxU − 3

2 uuxU − 〈U,Ux〉U
− 1

2 u3U − 1
2 u〈U,U〉U

is symmetry of (4.4), scaling limit
of (4.6)

(4.8)




ut = uxxx + 3uuxx + 3u2
x + 3u2ux

+ ux〈U,U〉 + 2u〈U,Ux〉 + 〈U,Uxx〉
+ 〈Ux, Ux〉,

Ut = 1
2 uxxU + uxUx + uuxU + u2Ux

+ 1
2 〈U,U〉Ux + 1

2 〈U,Ux〉U

is symmetry of (4.5), see there

(4.9)




ut = uxxx + 3uuxx + 3u2
x + 3u2ux

+ ux〈U,U〉 + 2u〈U,Ux〉 + 〈U,Uxx〉
+ 〈Ux, Ux〉,

Ut = 1
2 uxxU + uxUx + uuxU + u2Ux

+ 〈U,U〉Ux

contains third-order symmetry of
two-component Burgers system (4.35),
integrability unproven

(4.10)

{
ut = 3ux〈U,U〉 + 3〈U,Uxx〉 − 3〈U,U〉2,

Ut = Uxxx + uxxU + uxUx − 3〈U,Ux〉U obtained from (4.12) by MT

(4.11)




ut = 2ux〈U,U〉 + 2〈U,Uxx〉
− 〈Ux, Ux〉 − 2〈U,U〉2,

Ut = Uxxx + uxxU + 2uxUx

− 2〈U,U〉Ux − 2〈U,Ux〉U

linearizable by change of variable,
related to Kaup–Kupershmidt equation
in a certain manner
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Table 4. (Continued.)

Weights Weights of
(λ1, λ2) ∂t , ∂τ in
of u, U sys., sym. System Comments

(1, 1) 3, 5 (4.12)




ut = ux〈U,U〉 + 2u〈U,Ux〉 + 〈U,Uxx〉
+ 〈Ux, Ux〉,

Ut = Uxxx + uxxU + uxUx − 2uuxU

− u2Ux + 〈U,U〉Ux − 〈U,Ux〉U
connected with (3.3) and (4.10) by MT

(4.13)

{
ut = uxxx + 3

2 u2
x + 3

2 〈Ux, Ux〉,
Ut = uxUx

is potential form of (3.5)

(4.14)




ut = uxxx + 3u2
x + 2aux〈U,U〉

+ a〈U,Uxx〉 + a〈Ux, Ux〉 + b〈U,U〉2,

Ut = uxxU + 2uxUx + a〈U,U〉Ux

+ a〈U,Ux〉U, (a, b) �= (0, 0)

for b �= a2/4, transformed to (3.5);
for b = a2/4, to KdV equation
+ linear vector equation coupled to it

(4.15)

{
ut = uxxx + 3u2

x − 3〈Ux, Ux〉,
Ut = Uxxx + 6uxUx

is potential form of (3.4), MT
connects to (4.27)

(4.16)

{
ut = uxxx + 3u2

x + ux〈U,U〉 + 〈U,Uxx〉,
Ut = Uxxx + 3uxxU + 3uxUx + 〈U,Ux〉U obtained from (4.28) by MT

(4.17)




ut = uxxx + 3u2
x + 2ux〈U,U〉 + 〈U,Uxx〉

+ 1
2 〈Ux, Ux〉,

Ut = Uxxx + 6uxxU + 6uxUx + 2〈U,Ux〉U
obtained from (4.29) by MT

(4.18)




ut = uxxx + 3u2
x + 4ux〈U,U〉 + 2〈U,Uxx〉

+ 〈Ux, Ux〉 + 2
3 〈U,U〉2,

Ut = −2Uxxx − 6uxxU − 6uxUx

− 4〈U,Ux〉U
obtained from (4.30) by MT

(4.19)




ut = uxxx + u2
x − 12〈U,Uxx〉

+ 12〈Ux, Ux〉 − 4〈U,U〉2,

Ut = 4Uxxx + uxxU + 2uxUx

+ 4〈U,U〉Ux + 4〈U,Ux〉U

reduced to triangular system:
KdV equation + linear
vector equation coupled to it

(4.20)




ut = uxxx − 3
2 u2ux + 3

2 ux〈U,U〉
+ u〈U,Ux〉 + 〈U, Uxx〉 + 〈Ux,Ux〉,

Ut = −uxUx − 1
2 u2Ux + 3

2 〈U,U〉Ux

converted to triangular system:
KdV equation + nonlinear
equation with interesting reduction
(4.55) + linear vector equation

(4.21)




ut = uxxx − 3
2 u2ux + 3

2 ux〈U,U〉
+ u〈U,Ux〉 + 〈U, Uxx〉 + 〈Ux,Ux〉,

Ut = −uxUx − 1
2 u2Ux + 1

2 〈U,U〉Ux

+ 〈U, Ux〉U

exactly like for (4.20) only
different linear vector equation

(4.22)




ut = uxxx − 3
2 u2ux + 1

2 ux〈U,U〉
+ u〈U,Ux〉 + 〈U, Uxx〉 + 〈Ux,Ux〉,

Ut = uxxU + uxUx − uuxU − 1
2 u2Ux

+ 1
2 〈U,U〉Ux + 〈U,Ux〉U

obtained in [69], converted to
triangular system: KdV equation
+ linear equations coupled to it,
admits deformation connected
with (3.5) by MT

(4.23)




ut = uxxx − 3
2 u2ux + 3

2 ux〈U,U〉 + u〈U,Ux〉
+ 〈U, Uxx〉 + 〈Ux,Ux〉 + 1

2 〈U,U〉2,

Ut = −uxUx − 1
2 u2Ux − 1

2 〈U,U〉Ux

+ 1
2 u〈U,U〉U

contains interesting triangular
system (4.58) as closed subsystem:
KdV equation + nonlinear
equation coupled to it

(4.24)




ut = uxxx − 3
2 u2ux + ux〈U,U〉 + u〈U,Ux〉

+ 〈U, Uxx〉 + 〈Ux,Ux〉 − 1
4 u2〈U,U〉

+ 1
4 〈U,U〉2,

Ut = 1
2 uxxU + 1

2 〈U,Ux〉U − 1
4 u3U

+ 1
4 u〈U,U〉U

is symmetry of first-order system
(4.61), converted to triangular
system: KdV equation + Riccati
equation coupled to it + linear
vector equation coupled to them

(4.25)

{
ut = uxxx + u2ux + ux〈U,U〉,
Ut = Uxxx + u2Ux + 〈U,U〉Ux

equivalent to a single vector
mKdV equation for vector (u,U)
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Table 4. (Continued.)

Weights Weights of
(λ1, λ2) ∂t , ∂τ in
of u, U sys., sym. System Comments

(1, 1) 3, 5 (4.26)




ut = uxxx + 2u2ux + ux〈U,U〉 + u〈U,Ux〉,
Ut = Uxxx + uuxU + u2Ux + 〈U,U〉Ux

+ 〈U,Ux〉U
equivalent to a single vector
mKdV equation for vector (u, U)

(4.27)

{
ut = uxxx − 6u2ux + 6ux〈U,U〉 + 12u〈U,Ux〉,
Ut = Uxxx − 12uuxU − 6u2Ux + 6〈U,U〉Ux

known as a Jordan mKdV
system [27], connected with (3.4)
and (4.15) by MT

(4.28)




ut = uxxx − 6u2ux + ux〈U,U〉 + 2u〈U,Ux〉
+ 〈U,Uxx〉 + 〈Ux, Ux〉,

Ut = Uxxx + 3uxxU + 3uxUx − 6uuxU

− 3u2Ux + 〈U,U〉Ux + 3〈U,Ux〉U

admits Lax representation,

connected with (4.16) by MT

(4.29)




ut = uxxx − 6u2ux + ux〈U,U〉 + 2u〈U,Ux〉
+ 〈U,Uxx〉 + 〈Ux, Ux〉,

Ut = Uxxx + 6uxxU + 6uxUx − 12uuxU

− 6u2Ux + 〈U,U〉Ux + 4〈U,Ux〉U

multi-component generalization of
a modified Jaulent–Miodek flow
[83], admits Lax representation,

connected with (4.17) by MT

(4.30)




ut = uxxx − 6u2ux + ux〈U,U〉 + 2u〈U,Ux〉
+ 〈U,Uxx〉 + 〈Ux, Ux〉,

Ut = −2Uxxx − 6uxxU − 6uxUx + 12uuxU

+ 6u2Ux + 〈U,U〉Ux − 2〈U,Ux〉U

connected with (3.6) and (4.18)
by MT

(
1
2 , 1

2

)
2, 3 None

2, 4 None

3, 5 (5.3)




ut = (a + 1)(uxxx + 3u2uxx + 9uu2
x + 3u4ux

+ 3uxx〈U,U〉 + 6ux〈U,Ux〉 + 3ux〈U,U〉2)

+ 2au〈U,Uxx〉 + (2a + 3)u〈Ux, Ux〉
+ (10a + 6)uxu2〈U,U〉 + 2au3〈U,Ux〉
+ 6au〈U,U〉〈U, Ux〉 + au5〈U,U〉
+ 2au3〈U,U〉2 + au〈U,U〉3,

Ut = Uxxx + 3〈U,U〉Uxx + 6〈U,Ux〉Ux

+ 3〈Ux, Ux〉U + 3〈U,U〉2Ux − 2auxxuU

+ (a + 3)u2
xU + 6uuxUx + 3u2Uxx − 6auxu3U

+ 3u4Ux − 2auxu〈U,U〉U − 4au2〈U,Ux〉U
+ 6u2〈U,U〉Ux − au6U − 2au4〈U,U〉U
− au2〈U,U〉2U, a is arbitrary

is symmetry of first-order system
(5.6), extension of vector
Ibragimov–Shabat equation,

linearizable by change of variables

(5.4)




ut = uxxx + 3u2uxx + 9uu2
x + 3u4ux

+ 3uxx〈U,U〉 + 6ux〈U,Ux〉 + 2u〈U,Uxx〉
+ 2u〈Ux,Ux〉 + 10uxu2〈U,U〉 + 2u3〈U, Ux〉
+ 3ux〈U,U〉2 + 6u〈U,U〉〈U, Ux〉 + u5〈U,U〉
+ 2u3〈U,U〉2 + u〈U,U〉3,

Ut = −2uxxuU + u2
xU − 6uxu3U

− 2uxu〈U,U〉U − 4u2〈U,Ux〉U
− u6U − 2u4〈U,U〉U − u2〈U,U〉2U

is symmetry of first-order system
(5.6), scaling limit of (5.3),
linearized by the same change
of variables

(
1
3 , 2

3

)
2, 3 None

2, 4 None
3, 5 None

(
2
3 , 1

3

)
2, 3 (7.3)




ut = uxx + 2〈U,Uxx〉 + 2〈Ux, Ux〉 + 2u〈U,U〉3

+ 2〈U,U〉4,

Ut = −u〈U,U〉2U − 〈U, U〉3U

ultralocal change of variables
gives linear equations

2, 4 (7.3)
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Table 4. (Continued.)

Weights Weights of
(λ1, λ2) ∂t , ∂τ in
of u, U sys., sym. System Comments

(
2
3 , 1

3

)
2, 4 (7.4)




ut = −2〈U,Uxx〉 − 2u3〈U,U〉 − 6u2〈U,U〉2

− 6u〈U,U〉3 − 2〈U,U〉4,

Ut = Uxx + u3U + 3u2〈U, U〉U + 3u〈U,U〉2U

+ 〈U,U〉3U

ultralocal change of variables
gives linear equations

3, 5 (7.5)




ut = uxxx + 2〈U,Uxxx〉 + 6〈Ux, Uxx〉
+ 2ux〈U, U〉3 + 4〈U,U〉3〈U,Ux〉,

Ut = −ux〈U,U〉2U − 2〈U,U〉2〈U,Ux〉U
is symmetry of (7.3)

(7.6)




ut = uxxx + 2〈U,Uxxx〉 + 6〈Ux, Uxx〉
+ 2ux〈U, U〉3 + 4〈U,U〉3〈U,Ux〉,

Ut = −ux〈U,U〉2U − 4u〈U,U〉〈U,Ux〉U
+ 4u〈U,U〉2Ux − 6〈U,U〉2〈U,Ux〉U
+ 4〈U,U〉3Ux

ultralocal change of variables
gives linear equations

• We found a number of pairs/triplets of scalar–vector systems connected through
transformations of dependent variables. Besides standard Miura transformations that
map both the scalar and vector variables to new ones (see e.g. (4.44)), we also found
Miura-type transformations that act only on the scalar variable and do not change the
vector variable (see e.g. (4.46) combined with potentiation v = ûx). For some other
systems, we showed that a new scalar variable defined in terms of the old scalar and
vector variables satisfies a closed integrable equation, such as the KdV equation or a
linear equation.

• The search for such transformations in our case of scalar–vector systems is simple in
comparison to scalar–scalar systems. For instance, the ansatz that a new scalar variable
depends on the original vector variable U only through scalar products

〈
∂m
x U, ∂n

x U
〉

narrows down the candidates for such transformations considerably. This leads us to
the counter-intuitive observation that scalar–vector systems are, in a sense, more tractable
than scalar–scalar systems. This is probably one reason why, unlike our work, Foursov and
Olver proved integrability18 for only a small proportion of their two-component systems
[18, 25, 26].

Finally, we mention some problems not solved in this paper:

• How can the integrability of the three systems (4.5), (4.8) and (4.9) be established
along the lines of this paper? The main obstacle is that we know neither a linearizing
transformation nor a proper Lax representation for the two-component Burgers system
(4.35). The dependence of the functional form of travelling-wave solutions on the
boundary conditions and the velocity implies that (4.35) is a highly nontrivial system
and not linearizable by a naive extension of the Hopf–Cole transformation.

• Some scalar–vector systems are converted to a triangular form, i.e. a closed subsystem plus
remaining equations coupled to it. When the remaining equations contain a nonlinear
PDE in its own variable (cf (4.54b) or (4.58b)), it seems to be especially difficult to
solve them explicitly for a given solution of the subsystem. Is there any method, like
an extension of the inverse scattering method, for dealing with such triangular systems
analytically?

18 They discussed the existence of a recursion operator or a bi-Hamiltonian structure.
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• Can one construct an explicit formula for the general solution of (4.55)? This equation
is obtained from system (4.20) or (4.21) by converting it to a triangular form and then
considering the special case in which the solution of the subsystem, KdV equation in this
case, is identically zero.

Although we concentrated our attention on the five distinct weightings for u,U in this
paper, we also found integrable systems that are homogeneous under a different weighting
of variables. Namely, we obtained systems of coupled KdV–mKdV type, e.g. (4.47), (4.64),
(4.69) and (4.77),19 together with the proof of their integrability. We are planning to complete
a classification of integrable systems of this type, i.e. scalar–vector systems with weights
λ1 = 2, λ2 = 1, in a subsequent paper. Preliminary results can be viewed on the Web page
http://lie.math.brocku.ca/twolf/htdocs/sv/over.html.
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[81] Karasu (Kalkanli) A, Sakovich S Yu and Yurduşen Í 2003 Integrability of Kersten–Krasil’shchik coupled
KdV–mKdV equations: singularity analysis and Lax pair J. Math. Phys. 44 1703–8

[82] Jaulent M and Miodek I 1976 Nonlinear evolution equations associated with ‘energy-dependent Schrödinger
potentials’ Lett. Math. Phys. 1 243–50

[83] Martı́nez Alonso L and Guil Guerrero F 1981 Modified Hamiltonian systems and canonical transformations
arising from the relationship between generalized Zakharov–Shabat and energy-dependent Schrödinger
operators J. Math. Phys. 22 2497–503

[84] Nijhoff F W, Quispel G R W, van der Linden J and Capel H W 1983 On some linear integral equations generating
solutions of nonlinear partial differential equations Physica A 119 101–42



Classification of polynomial integrable systems: I 7733

[85] Das A and Popowicz Z 2004 Bosonic reduction of susy generalized Harry Dym equation J. Phys. A: Math. Gen.
37 8031–44

[86] Leble S B and Ustinov N V 1993 Darboux transforms, deep reductions and solitons J. Phys. A: Math. Gen. 26
5007–16

[87] Calogero F 1987 The evolution partial differential equation ut = uxxx + 3(uxxu2 + 3u2
xu) + 3uxu4 J. Math.

Phys. 28 538–55


	1. Introduction
	2. Computational aspects
	3. The case
	3.1. List of systems with a higher symmetry
	3.2. Integrability of systems (3.3)--(3.6)

	4. The case
	4.1. Lists of systems with a higher symmetry
	4.2. Integrability of systems (4.3)--(4.30)

	5. The case
	5.1. List of systems with a higher symmetry
	5.2. Integrability of

	6. The case
	7. The case
	7.1. Lists of systems with a higher symmetry
	7.2. Integrability of systems (7.3)--(7.6)

	8. Concluding remarks
	Acknowledgments
	References

